ﻻ يوجد ملخص باللغة العربية
We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory (IFTP), and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length $tilde{ell}_p$ the {it trans} side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance $R_N$ as a function of the chain length $N$ must be known. To this end, we first derive a semi-analytic scaling form for $R_N$, which reproduces the limits of a rod, an ideal chain, and an excluded volume chain in the appropriate limits. We then quantitatively characterize the nature of the {it trans} side friction based on MD simulations of semi-flexible chains. Augmented with these two factors, the modified IFTP theory shows that there are three main regimes for the scaling of the average translocation time $tau propto N^{alpha}$. In the stiff chain (rod) limit $N/tilde{ell}_p ll 1$, {$alpha = 2$}, which continuously crosses over in the regime $ 1 < N/tilde{ell}_p < 4$ towards the ideal chain behavior with {$alpha = 3/2$}, which is reached in the regime $N/tilde{ell}_p sim 10^2$. Finally, in the limit $N/tilde{ell}_p gg 10^6$ the translocation exponent approaches its symptotic value $1+ u$, where $ u$ is the Flory exponent. Our results are in good agreement with available simulations and experimental data.
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy $epsilon$ between the chaperone and the chain and the chaperone
Using two dimensional Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a fluidic channel with diameter $R$ through a nanopore under a driving force $F$. Due to the crowding effect induced by the partially trans
The translocation dynamics of a polymer chain through a nanopore in the absence of an external driving force is analyzed by means of scaling arguments, fractional calculus, and computer simulations. The problem at hand is mapped on a one dimensional
We determine the scaling exponents of polymer translocation (PT) through a nanopore by extensive computer simulations of various microscopic models for chain lengths extending up to N=800 in some cases. We focus on the scaling of the average PT time
Using Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a circular nanocontainer through a nanopore under a driving force $F$. We observe that the translocation probability initially increases and then saturates