ترغب بنشر مسار تعليمي؟ اضغط هنا

Two phase picture in driven polymer translocation

99   0   0.0 ( 0 )
 نشر من قبل Takuya Saito
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two phase picture is a simple and effective methodology to capture the nonequilibrium dynamics of polymer associated with tension propagation. When applying it to the driven translocation process, there is a point to be noted, as briefly discussed in our recent article [Phys. Rev. E 85, 061803 (2012)]. In this article, we address this issue in detail and modify our previous prediction [Euro. Phys. J. E 34, 135 (2011)] by adopting an alternative steady-state ansatz. The modified scaling prediction turns out to be the same as that of the iso-flux model recently proposed by Rowghanian and Grosberg [J. Phys. Chem. B 115, 14127-14135 (2011)].



قيم البحث

اقرأ أيضاً

We present a Brownian dynamics model of driven polymer translocation, in which non-equilibrium memory effects arising from tension propagation (TP) along the cis side subchain are incorporated as a time-dependent friction. To solve the effective fric tion, we develop a finite chain length TP formalism, expanding on the work of Sakaue [Sakaue, PRE 76, 021803 (2007)]. The model, solved numerically, yields results in excellent agreement with molecular dynamics simulations in a wide range of parameters. Our results show that non-equilibrium TP along the cis side subchain dominates the dynamics of driven translocation. In addition, the model explains the different scaling of translocation time w.r.t chain length observed both in experiments and simulations as a combined effect of finite chain length and pore-polymer interactions.
During polymer translocation driven by e.g. voltage drop across a nanopore, the segments in the cis-side is incessantly pulled into the pore, which are then pushed out of it into the trans-side. This pulling and pushing polymer segments are described in the continuum level by nonlinear transport processes known, respectively, as fast and slow diffusions. By matching solutions of both sides through the mass conservation across the pore, we provide a physical basis for the cis and trans dynamical asymmetry, a feature repeatedly reported in recent numerical simulations. We then predict how the total driving force is dynamically allocated between cis (pulling) and trans (pushing) sides, demonstrating that the trans-side event adds a finite-chain length effect to the dynamical scaling, which may become substantial for weak force and/or high pore friction cases.
We present a theoretical argument to derive a scaling law between the mean translocation time $tau$ and the chain length $N$ for driven polymer translocation. This scaling law explicitly takes into account the pore-polymer interactions, which appear as a correction term to asymptotic scaling and are responsible for the dominant finite size effects in the process. By eliminating the correction-to-scaling term we introduce a rescaled translocation time and show, by employing both the Brownian Dynamics Tension Propagation theory [Ikonen {it et al.}, Phys. Rev. E {bf 85}, 051803 (2012)] and molecular dynamics simulations that the rescaled exponent reaches the asymptotic limit in a range of chain lengths that is easily accessible to simulations and experiments. The rescaling procedure can also be used to quantitatively estimate the magnitude of the pore-polymer interaction from simulations or experimental data. Finally, we also consider the case of driven translocation with hydrodynamic interactions (HIs). We show that by augmenting the BDTP theory with HIs one reaches a good agreement between the theory and previous simulation results found in the literature. Our results suggest that the scaling relation between $tau$ and $N$ is retained even in this case.
The impact of thermal fluctuations on the translocation dynamics of a polymer chain driven through a narrow pore has been investigated theoretically and by means of extensive Molecular-Dynamics (MD) simulation. The theoretical consideration is based on the so-called velocity Langevin (V-Langevin) equation which determines the progress of the translocation in terms of the number of polymer segments, $s(t)$, that have passed through the pore at time $t$ due to a driving force $f$. The formalism is based only on the assumption that, due to thermal fluctuations, the translocation velocity $v=dot{s}(t)$ is a Gaussian random process as suggested by our MD data. With this in mind we have derived the corresponding Fokker-Planck equation (FPE) which has a nonlinear drift term and diffusion term with a {em time-dependent} diffusion coefficient $D(t)$. Our MD simulation reveals that the driven translocation process follows a {em super}diffusive law with a running diffusion coefficient $D(t) propto t^{gamma}$ where $gamma < 1$. This finding is then used in the numerical solution of the FPE which yields an important result: for comparatively small driving forces fluctuations facilitate the translocation dynamics. As a consequence, the exponent $alpha$ which describes the scaling of the mean translocation time $<tau>$ with the length $N$ of the polymer, $<tau> propto N^{alpha}$ is found to diminish. Thus, taking thermal fluctuations into account, one can explain the systematic discrepancy between theoretically predicted duration of a driven translocation process, considered usually as a deterministic event, and measurements in computer simulations. In the non-driven case, $f=0$, the translocation is slightly subdiffusive and can be treated within the framework of fractional Brownian motion (fBm).
138 - Kehong Zhang , Kaifu Luo 2012
Using Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a circular nanocontainer through a nanopore under a driving force $F$. We observe that the translocation probability initially increases and then saturates with increasing $F$, independent of $phi$, which is the average density of the whole chain in the nanocontainer. The translocation time distribution undergoes a transition from a Gaussian distribution to an asymmetric distribution with increasing $phi$. Moreover, we find a nonuniversal scaling exponent of the translocation time as chain length, depending on $phi$ and $F$. These results are interpreted by the conformation of the translocated chain in the nanocontainer and the time of an individual segment passing through the pore during translocation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا