ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling theory of driven polymer translocation

158   0   0.0 ( 0 )
 نشر من قبل Timo Ikonen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical argument to derive a scaling law between the mean translocation time $tau$ and the chain length $N$ for driven polymer translocation. This scaling law explicitly takes into account the pore-polymer interactions, which appear as a correction term to asymptotic scaling and are responsible for the dominant finite size effects in the process. By eliminating the correction-to-scaling term we introduce a rescaled translocation time and show, by employing both the Brownian Dynamics Tension Propagation theory [Ikonen {it et al.}, Phys. Rev. E {bf 85}, 051803 (2012)] and molecular dynamics simulations that the rescaled exponent reaches the asymptotic limit in a range of chain lengths that is easily accessible to simulations and experiments. The rescaling procedure can also be used to quantitatively estimate the magnitude of the pore-polymer interaction from simulations or experimental data. Finally, we also consider the case of driven translocation with hydrodynamic interactions (HIs). We show that by augmenting the BDTP theory with HIs one reaches a good agreement between the theory and previous simulation results found in the literature. Our results suggest that the scaling relation between $tau$ and $N$ is retained even in this case.



قيم البحث

اقرأ أيضاً

We present a Brownian dynamics model of driven polymer translocation, in which non-equilibrium memory effects arising from tension propagation (TP) along the cis side subchain are incorporated as a time-dependent friction. To solve the effective fric tion, we develop a finite chain length TP formalism, expanding on the work of Sakaue [Sakaue, PRE 76, 021803 (2007)]. The model, solved numerically, yields results in excellent agreement with molecular dynamics simulations in a wide range of parameters. Our results show that non-equilibrium TP along the cis side subchain dominates the dynamics of driven translocation. In addition, the model explains the different scaling of translocation time w.r.t chain length observed both in experiments and simulations as a combined effect of finite chain length and pore-polymer interactions.
We study the dynamics of driven polymer translocation using both molecular dynamics (MD) simulations and a theoretical model based on the non-equilibrium tension propagation on the {it cis} side subchain. We present theoretical and numerical evidence that the non-universal behavior observed in experiments and simulations are due to finite chain length effects that persist well beyond the relevant experimental and simulation regimes. In particular, we consider the influence of the pore-polymer interactions and show that they give a major contribution to the non-universal effects. In addition, we present comparisons between the theory and MD simulations for several quantities, showing extremely good agreement in the relevant parameter regimes. Finally, we discuss the potential limitations of the present theories.
Two phase picture is a simple and effective methodology to capture the nonequilibrium dynamics of polymer associated with tension propagation. When applying it to the driven translocation process, there is a point to be noted, as briefly discussed in our recent article [Phys. Rev. E 85, 061803 (2012)]. In this article, we address this issue in detail and modify our previous prediction [Euro. Phys. J. E 34, 135 (2011)] by adopting an alternative steady-state ansatz. The modified scaling prediction turns out to be the same as that of the iso-flux model recently proposed by Rowghanian and Grosberg [J. Phys. Chem. B 115, 14127-14135 (2011)].
The impact of thermal fluctuations on the translocation dynamics of a polymer chain driven through a narrow pore has been investigated theoretically and by means of extensive Molecular-Dynamics (MD) simulation. The theoretical consideration is based on the so-called velocity Langevin (V-Langevin) equation which determines the progress of the translocation in terms of the number of polymer segments, $s(t)$, that have passed through the pore at time $t$ due to a driving force $f$. The formalism is based only on the assumption that, due to thermal fluctuations, the translocation velocity $v=dot{s}(t)$ is a Gaussian random process as suggested by our MD data. With this in mind we have derived the corresponding Fokker-Planck equation (FPE) which has a nonlinear drift term and diffusion term with a {em time-dependent} diffusion coefficient $D(t)$. Our MD simulation reveals that the driven translocation process follows a {em super}diffusive law with a running diffusion coefficient $D(t) propto t^{gamma}$ where $gamma < 1$. This finding is then used in the numerical solution of the FPE which yields an important result: for comparatively small driving forces fluctuations facilitate the translocation dynamics. As a consequence, the exponent $alpha$ which describes the scaling of the mean translocation time $<tau>$ with the length $N$ of the polymer, $<tau> propto N^{alpha}$ is found to diminish. Thus, taking thermal fluctuations into account, one can explain the systematic discrepancy between theoretically predicted duration of a driven translocation process, considered usually as a deterministic event, and measurements in computer simulations. In the non-driven case, $f=0$, the translocation is slightly subdiffusive and can be treated within the framework of fractional Brownian motion (fBm).
We investigate the dynamics of pore-driven polymer translocation by theoretical analysis and molecular dynamics (MD) simulations. Using the tension propagation theory within the constant flux approximation we derive an explicit equation of motion for the tension front. From this we derive a scaling relation for the average translocation time $tau$, which captures the asymptotic result $tau propto N_0^{1+ u}$, where $N_0$ is the chain length and $ u$ is the Flory exponent. In addition, we derive the leading correction-to-scaling term to $tau$ and show that all terms of order $N_0^{2 u}$ exactly cancel out, leaving only a finite-chain length correction term due to the effective pore friction, which is linearly proportional to $N_0$. We use the model to numerically include fluctuations in the initial configuration of the polymer chain in addition to thermal noise. We show that when the {it cis} side fluctuations are properly accounted for, the model not only reproduces previously known results but also considerably improves the estimates of the monomer waiting time distribution and the time evolution of the translocation coordinate $s(t)$, showing excellent agreement with MD simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا