ترغب بنشر مسار تعليمي؟ اضغط هنا

The N{e}el-VBS transition in three-dimensional SU($N$) antiferromagnets

100   0   0.0 ( 0 )
 نشر من قبل Matthew Block
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results for the phase diagram of an SU($N$) generalization of the Heisenberg antiferromagnet on a bipartite three-dimensional anisotropic cubic (tetragonal) lattice as a function of $N$ and the lattice anisotropy $gamma$. In the isotropic $gamma=1$ cubic limit, we find a transition from N{e}el to valence bond solid (VBS) between N=9 and N=10. We follow the N{e}el-VBS transition to the limiting cases of $gamma ll 1 $ (weakly coupled layers) and $gamma gg 1$ (weakly coupled chains). Throughout the phase diagram we find a direct first-order transition from N{e}el at small-$N$ to VBS at large-$N$. In the three-dimensional models studied here, we find no evidence for either an intervening spin-liquid photon phase or a continuous transition, even close to the limit $gamma ll 1$ where the isolated layers undergo continuous N{e}el-VBS transitions.



قيم البحث

اقرأ أيضاً

In this manuscript we review recent developments in the numerical simulations of bipartite SU(N) spin models by quantum Monte Carlo (QMC) methods. We provide an account of a large family of newly discovered sign-problem free spin models which can be simulated in their ground states on large lattices, containing O(10^5) spins, using the stochastic series expansion method with efficient loop algorithms. One of the most important applications so far of these Hamiltonians are to unbiased studies of quantum criticality between Neel and valence bond phases in two dimensions -- a summary of this body of work is provided. The article concludes with an overview of the current status of and outlook for future studies of the designer Hamiltonians.
Spin correlations in the pyrochlore antiferromagnet Y_2Ru_2O_7 with Curie-Weiss temperature $Theta_{CW}=-1100$ K and critical temperature T_N=77 K were examined through neutron scattering. For $T_N<T<Theta_{CW}/3$ the data show spin relaxation with a rate $hbarGamma= 1.17(9)k_BT$. For T<T_N spectral weight moves to higher energies with substantial changes up to $4times k_BT_N$. For T<<T_N there is a $Delta=11(1)$ meV energy gap and a pronounced spectral maximum at 19.7 meV. Throughout the temperature range examined the wave vector dependence of inelastic scattering exhibits a broad peak for $Qdapprox 3.8$ (d is Ru-Ru spacing) consistent with dipolar spin correlations.
We report time-of-flight neutron spectroscopic and diffraction studies of the 5$d^2$ cubic double pervoskite magnets, Ba$_2$MOsO$_6$ ($M$ = Zn, Mg, Ca). These cubic materials are all described by antiferromagnetically-coupled 5$d^2$ Os$^{6+}$ ions de corating a face-centred cubic (FCC) lattice. They all exhibit thermodynamic anomalies consistent with phase transitions at a temperature $T^*$, and exhibit a gapped magnetic excitation spectrum with spectral weight concentrated at wavevectors typical of type I antiferromagnetic orders. While muon spin resonance experiments show clear evidence for time reversal symmetry breaking, no corresponding magnetic Bragg scattering is observed at low temperatures. These results, consistent with low temperature octupolar or quadrupolar order, are discussed in the context of other 5$d^2$ DP magnets, and theories for $d^2$ ions on a FCC lattice which predict exotic orders driven by multipolar interactions.
Single crystals of Nd$_2$O$_3$ were grown and characterized using neutron scattering and thermodynamic measurements. Nd$_2$O$_3$ has long-range antiferromagnetic order below $T_{rm N}$ = 0.55 K and specific heat measurements have demonstrated that a significant amount of the magnetic entropy is released above $T_{rm N}$. Inelastic neutron scattering experiments reveal a magnetic mode(s) with little dispersion peaked at $approx$ 0.37 meV that is of greatest intensity below $T_{rm N}$ but persists above 2$T_{rm N}$. This persistence of dynamic correlations is likely related to frustrated interactions associated with the nearly-ideal stacked triangular lattice geometry of $J_{textrm{eff}}$ = 1/2 spins on Nd$^{3+}$ ions. The magnetization is observed to be strongly anisotropic at all temperatures due to crystal field effects, with easy-plane anisotropy observed. A non-compensated magnetic structure is inferred from the temperature-dependence of the magnetization when a magnetic field of sufficient strength is applied within the basal plane near $T_{rm N}$, and the evolution of the long-range order is summarized in a temperature-field phase diagram.
130 - H. Tanaka , A. Oosawa , T. Kato 2001
Neutron elastic scattering experiments have been performed on the spin gap system TlCuCl$_3$ in magnetic fields parallel to the $b$-axis. The magnetic Bragg peaks which indicate the field-induced N{e}el ordering were observed for magnetic field highe r than the gap field $H_{rm g}approx 5.5$ T at $Q=(h, 0, l)$ with odd $l$ in the $a^*-c^*$ plane. The spin structure in the ordered phase was determined. The temperature and field dependence of the Bragg peak intensities and the phase boundary obtained were discussed in connection with a recent theory which describes the field-induced N{e}el ordering as a Bose-Einstein condensation of magnons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا