ﻻ يوجد ملخص باللغة العربية
In this manuscript we review recent developments in the numerical simulations of bipartite SU(N) spin models by quantum Monte Carlo (QMC) methods. We provide an account of a large family of newly discovered sign-problem free spin models which can be simulated in their ground states on large lattices, containing O(10^5) spins, using the stochastic series expansion method with efficient loop algorithms. One of the most important applications so far of these Hamiltonians are to unbiased studies of quantum criticality between Neel and valence bond phases in two dimensions -- a summary of this body of work is provided. The article concludes with an overview of the current status of and outlook for future studies of the designer Hamiltonians.
We present results for the phase diagram of an SU($N$) generalization of the Heisenberg antiferromagnet on a bipartite three-dimensional anisotropic cubic (tetragonal) lattice as a function of $N$ and the lattice anisotropy $gamma$. In the isotropic
The DMRG method is applied to integrable models of antiferromagnetic spin chains for fundamental and higher representations of SU(2), SU(3), and SU(4). From the low energy spectrum and the entanglement entropy, we compute the central charge and the
We consider the easy-plane limit of bipartite SU($N$) Heisenberg Hamiltonians which have a fundamental representation on one sublattice and the conjugate to fundamental on the other sublattice. For $N=2$ the easy plane limit of the SU(2) Heisenberg m
We study two-dimensional Heisenberg antiferromagnets with additional multi-spin interactions which can drive the system into a valence-bond solid state. For standard SU(2) spins, we consider both four- and six-spin interactions. We find continuous qu
The Hubbard model on a two-leg ladder structure has been studied by a combination of series expansions at T=0 and the density-matrix renormalization group. We report results for the ground state energy $E_0$ and spin-gap $Delta_s$ at half-filling, as