ﻻ يوجد ملخص باللغة العربية
Single crystals of Nd$_2$O$_3$ were grown and characterized using neutron scattering and thermodynamic measurements. Nd$_2$O$_3$ has long-range antiferromagnetic order below $T_{rm N}$ = 0.55 K and specific heat measurements have demonstrated that a significant amount of the magnetic entropy is released above $T_{rm N}$. Inelastic neutron scattering experiments reveal a magnetic mode(s) with little dispersion peaked at $approx$ 0.37 meV that is of greatest intensity below $T_{rm N}$ but persists above 2$T_{rm N}$. This persistence of dynamic correlations is likely related to frustrated interactions associated with the nearly-ideal stacked triangular lattice geometry of $J_{textrm{eff}}$ = 1/2 spins on Nd$^{3+}$ ions. The magnetization is observed to be strongly anisotropic at all temperatures due to crystal field effects, with easy-plane anisotropy observed. A non-compensated magnetic structure is inferred from the temperature-dependence of the magnetization when a magnetic field of sufficient strength is applied within the basal plane near $T_{rm N}$, and the evolution of the long-range order is summarized in a temperature-field phase diagram.
We have studied the physical properties of Nd$_2$O$_3$ with neutron diffraction, inelastic neutron scattering, heat capacity, and magnetic susceptibility measurements. Nd$_2$O$_3$ crystallizes in a trigonal structure, with Nd$^{3+}$ ions surrounded b
Neutron elastic scattering experiments have been performed on the spin gap system TlCuCl$_3$ in magnetic fields parallel to the $b$-axis. The magnetic Bragg peaks which indicate the field-induced N{e}el ordering were observed for magnetic field highe
We present an investigation of the influence of low-levels of chemical substitution on the magnetic ground state and N{ e}el skyrmion lattice (SkL) state in GaV$_4$S$_{8-y}$Se$_y$, where $y =0, 0.1, 7.9$, and $8$. Muon-spin spectroscopy ($mu$SR) meas
Neutron diffraction and magnetic susceptibility studies of orthorhombic single crystal {Ksub} confirm the three dimensional (3D) C-type antiferromagnetic (AFM) ordering of the Mn$^{2+}$ moments at $T_{rm N}=305 pm 3$ K which is slightly higher than t
We present results for the phase diagram of an SU($N$) generalization of the Heisenberg antiferromagnet on a bipartite three-dimensional anisotropic cubic (tetragonal) lattice as a function of $N$ and the lattice anisotropy $gamma$. In the isotropic