ترغب بنشر مسار تعليمي؟ اضغط هنا

An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core

36   0   0.0 ( 0 )
 نشر من قبل Suvi Gezari
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two `relativistic candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report the discovery of a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decline of its light curve follows the predicted mass accretion rate, and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about 2 million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.

قيم البحث

اقرأ أيضاً

We present a Hubble Space Telescope STIS spectrum of ASASSN-14li, the first rest-frame UV spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with $T_{mathrm{UV}} = 3.5 times 10^{4}$ K, an order of magnitud e smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry). Super-imposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (FWHM $approx 2000$-8000 km s$^{-1}$) emission lines at/near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by $Delta v = -(250$-400) km s$^{-1}$. Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission process(es) at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and N-rich quasars.
The existence of optical-ultraviolet Tidal Disruption Events (TDEs) could be considered surprising because their electromagnetic output was originally predicted to be dominated by X-ray emission from an accretion disk. Yet over the last decade, the g rowth of optical transient surveys has led to the identification of a new class of optical transients occurring exclusively in galaxy centers, many of which are considered to be TDEs. Here we review the observed properties of these events, identified based on a shared set of both photometric and spectroscopic properties. We present a homogeneous analysis of 33 sources that we classify as robust TDEs, and which we divide into classes. The criteria used here to classify TDEs will possibly get updated as new samples are collected and potential additional diversity of TDEs is revealed. We also summarize current measurements of the optical-ultraviolet TDE rate, as well as the mass function and luminosity function. Many open questions exist regarding the current sample of events. We anticipate that the search for answers will unlock new insights in a variety of fields, from accretion physics to galaxy evolution.
The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive dete ction. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly-launched jet. The multi-wavelength properties of the source present a natural analogy with accretion state changes of stellar mass black holes, suggesting all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection.
SDSS J120136.02+300305.5 was detected in an XMM-Newton slew from June 2010 with a flux 56 times higher than an upper limit from ROSAT, corresponding to Lx~3x10^44 ergs/s. It has the optical spectrum of a quiescent galaxy (z=0.146). Overall the X-ray flux has evolved consistently with the canonical t^-5/3 model, expected for returning stellar debris from a tidal disruption event, fading by a factor ~300 over 300 days. In detail the source is very variable and became invisible to Swift between 27 and 48 days after discovery, perhaps due to self-absorption. The X-ray spectrum is soft but is not the expected tail of optically thick thermal emission. It may be fit with a Bremsstrahlung or double-power-law model and is seen to soften with time and declining flux. Optical spectra taken 12 days and 11 months after discovery indicate a deficit of material in the broad line and coronal line regions of this galaxy, while a deep radio non-detection implies that a jet was not launched during this event.
137 - Dheeraj R. Pasham 2017
We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32$pm$4 day s. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similar objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا