ﻻ يوجد ملخص باللغة العربية
The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly-launched jet. The multi-wavelength properties of the source present a natural analogy with accretion state changes of stellar mass black holes, suggesting all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection.
We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32$pm$4 day
We present a Hubble Space Telescope STIS spectrum of ASASSN-14li, the first rest-frame UV spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with $T_{mathrm{UV}} = 3.5 times 10^{4}$ K, an order of magnitud
We report on late time radio and X-ray observations of the tidal disruption event candidate ASASSN-14li, covering the first 1000 days of the decay phase. For the first $sim200$ days the radio and X-ray emission fade in concert. This phase is better f
The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an
We report on the discovery of an ultrasoft X-ray transient source, 3XMM J152130.7+074916. It was serendipitously detected in an XMM-Newton observation on 2000 August 23, and its location is consistent with the center of the galaxy SDSS J152130.72+074