ﻻ يوجد ملخص باللغة العربية
SDSS J120136.02+300305.5 was detected in an XMM-Newton slew from June 2010 with a flux 56 times higher than an upper limit from ROSAT, corresponding to Lx~3x10^44 ergs/s. It has the optical spectrum of a quiescent galaxy (z=0.146). Overall the X-ray flux has evolved consistently with the canonical t^-5/3 model, expected for returning stellar debris from a tidal disruption event, fading by a factor ~300 over 300 days. In detail the source is very variable and became invisible to Swift between 27 and 48 days after discovery, perhaps due to self-absorption. The X-ray spectrum is soft but is not the expected tail of optically thick thermal emission. It may be fit with a Bremsstrahlung or double-power-law model and is seen to soften with time and declining flux. Optical spectra taken 12 days and 11 months after discovery indicate a deficit of material in the broad line and coronal line regions of this galaxy, while a deep radio non-detection implies that a jet was not launched during this event.
We report on the discovery of an ultrasoft X-ray transient source, 3XMM J152130.7+074916. It was serendipitously detected in an XMM-Newton observation on 2000 August 23, and its location is consistent with the center of the galaxy SDSS J152130.72+074
Theory suggests that a star making a close passage by a supermassive black hole at the center of a galaxy can under most circumstances be expected to emit a giant flare of radiation as it is disrupted and a portion of the resulting stream of shock-he
The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive dete
We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32$pm$4 day
We present the discovery of a luminous X-ray transient, serendipitously detected by Swifts X-ray Telescope (XRT) on 2020 February 5, located in the nucleus of the galaxy SDSS J143359.16+400636.0 at z=0.099 (luminosity distance $D_{rm L}=456$ Mpc). Th