ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical-Ultraviolet Tidal Disruption Events

92   0   0.0 ( 0 )
 نشر من قبل Iair Arcavi Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sjoert van Velzen




اسأل ChatGPT حول البحث

The existence of optical-ultraviolet Tidal Disruption Events (TDEs) could be considered surprising because their electromagnetic output was originally predicted to be dominated by X-ray emission from an accretion disk. Yet over the last decade, the growth of optical transient surveys has led to the identification of a new class of optical transients occurring exclusively in galaxy centers, many of which are considered to be TDEs. Here we review the observed properties of these events, identified based on a shared set of both photometric and spectroscopic properties. We present a homogeneous analysis of 33 sources that we classify as robust TDEs, and which we divide into classes. The criteria used here to classify TDEs will possibly get updated as new samples are collected and potential additional diversity of TDEs is revealed. We also summarize current measurements of the optical-ultraviolet TDE rate, as well as the mass function and luminosity function. Many open questions exist regarding the current sample of events. We anticipate that the search for answers will unlock new insights in a variety of fields, from accretion physics to galaxy evolution.



قيم البحث

اقرأ أيضاً

95 - Suvi Gezari 2021
The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probin g otherwise dormant MBHs, first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s; but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow, to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: $bullet$ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. $bullet$ The UV/optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range, and is highly variable, providing important clues as to what is powering the two components. $bullet$ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, while those with only He II emission lines are the rarest class.
We report the discovery by the intermediate Palomar Transient Factory (iPTF) of a candidate tidal disruption event (TDE) iPTF16axa at $z=0.108$, and present its broadband photometric and spectroscopic evolution from 3 months of follow-up observations with ground-based telescopes and Swift. The light curve is well fitted with a $t^{-5/3}$ decay, and we constrain the rise-time to peak to be $<$49 rest-frame days after disruption, which is roughly consistent with the fallback timescale expected for the $sim 5times$10$^{6}$ $M_odot$ black hole inferred from the stellar velocity dispersion of the host galaxy. The UV and optical spectral energy distribution (SED) is well described by a constant blackbody temperature of T$sim$ 3$times$10$^4$ K over the monitoring period, with an observed peak luminosity of 1.1$times$10$^{44}$ erg s$^{-1}$. The optical spectra are characterized by a strong blue continuum and broad HeII and H$alpha$ lines characteristic of TDEs. We compare the photometric and spectroscopic signatures of iPTF16axa with 11 TDE candidates in the literature with well-sampled optical light curves. Based on a single-temperature fit to the optical and near-UV photometry, most of these TDE candidates have peak luminosities confined between log(L [erg s$^{-1}$]) = 43.4-44.4, with constant temperatures of a few $times 10^{4}$ K during their power-law declines, implying blackbody radii on the order of ten times the tidal disruption radius, that decrease monotonically with time. For TDE candidates with hydrogen and helium emission, the high helium-to-hydrogen ratios suggest that the emission arises from high-density gas, where nebular arguments break down. We find no correlation between the peak luminosity and the black hole mass, contrary to the expectations for TDEs to have $dot{M} propto M_{rm BH}^{-1/2}$.
The discovery of jets from tidal disruption events (TDEs) rejuvenated the old field of relativistic jets powered by accretion onto supermassive black holes. In this Chapter, we first review the extensive multi-wavelength observations of jetted TDEs. Then, we show that these events provide valuable information on many aspects of jet physics from a new prospective, including the on-and-off switch of jet launching, jet propagation through the ambient medium, $gamma/$X-ray radiation mechanism, jet composition, and the multi-messenger picture. Finally, open questions and future prospects in this field are summarized.
159 - Giuseppe Lodato 2020
Numerical simulations have historically played a major role in understanding the hydrodynamics of the tidal disruption process. Given the complexity of the geometry of the system, the challenges posed by the problem have indeed stimulated much work o n the numerical side. Smoothed Particles Hydrodynamics methods, for example, have seen their very first applications in the context of tidal disruption and still play a major role to this day. Likewise, initial attempts at simulating the evolution of the disrupted star with the so-called affine method have been historically very useful. In this Chapter, we provide an overview of the numerical techniques used in the field and of their limitations, and summarize the work that has been done to simulate numerically the tidal disruption process.
102 - Kimitake Hayasaki 2021
Tidal disruption events are an excellent probe for supermassive black holes in distant inactive galaxies because they show bright multi-wavelength flares lasting several months to years. AT2019dsg presents the first potential association with neutrino emission from such an explosive event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا