ﻻ يوجد ملخص باللغة العربية
The density matrix in quantum mechanics parameterizes the statistical properties of the system under observation, just like a classical probability distribution does for classical systems. The expectation value of observables cannot be measured directly, it can only be approximated by applying classical statistical methods to the frequencies by which certain measurement outcomes (clicks) are obtained. In this paper, we make a detailed study of the statistical fluctuations obtained during an experiment in which a hypothesis is tested, i.e. the hypothesis that a certain setup produces a given quantum state. Although the classical and quantum problem are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. Just as in the case of classical hypothesis testing, the confidence in quantum hypothesis testing scales exponentially in the number of copies. In this paper, we will argue 1) that the physically relevant data of quantum experiments is only contained in the frequencies of the measurement outcomes, and that the statistical fluctuations of the experiment are essential, so that the correct formulation of the conclusions of a quantum experiment should be given in terms of hypothesis tests, 2) that the (classical) $chi^2$ test for distinguishing two quantum states gives rise to the quantum $chi^2$ divergence when optimized over the measurement basis, 3) present a max-min characterization for the optimal measurement basis for quantum goodness of fit testing, find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiency, and determine the associated divergence rates.
The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecolog
We investigate the statistics of stationary points in the sum of squares of $N$ Gaussian random fields, which we call a chi-squared field. The behavior of such a field at a point is investigated, with particular attention paid to the formation of top
We propose and study a general method for construction of consistent statistical tests on the basis of possibly indirect, corrupted, or partially available observations. The class of tests devised in the paper contains Neymans smooth tests, data-driv
Reduced chi-squared is a very popular method for model assessment, model comparison, convergence diagnostic, and error estimation in astronomy. In this manuscript, we discuss the pitfalls involved in using reduced chi-squared. There are two independe
Non-parametric goodness-of-fit testing procedures based on kernel Stein discrepancies (KSD) are promising approaches to validate general unnormalised distributions in various scenarios. Existing works have focused on studying optimal kernel choices t