ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalised Kernel Stein Discrepancy(GKSD): A Unifying Approach for Non-parametric Goodness-of-fit Testing

84   0   0.0 ( 0 )
 نشر من قبل Wenkai Xu
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Wenkai Xu




اسأل ChatGPT حول البحث

Non-parametric goodness-of-fit testing procedures based on kernel Stein discrepancies (KSD) are promising approaches to validate general unnormalised distributions in various scenarios. Existing works have focused on studying optimal kernel choices to boost test performances. However, the Stein operators are generally non-unique, while different choices of Stein operators can also have considerable effect on the test performances. In this work, we propose a unifying framework, the generalised kernel Stein discrepancy (GKSD), to theoretically compare and interpret different Stein operators in performing the KSD-based goodness-of-fit tests. We derive explicitly that how the proposed GKSD framework generalises existing Stein operators and their corresponding tests. In addition, we show thatGKSD framework can be used as a guide to develop kernel-based non-parametric goodness-of-fit tests for complex new data scenarios, e.g. truncated distributions or compositional data. Experimental results demonstrate that the proposed tests control type-I error well and achieve higher test power than existing approaches, including the test based on maximum-mean-discrepancy (MMD).



قيم البحث

اقرأ أيضاً

112 - Wenkai Xu , Gesine Reinert 2021
We propose and analyse a novel nonparametric goodness of fit testing procedure for exchangeable exponential random graph models (ERGMs) when a single network realisation is observed. The test determines how likely it is that the observation is genera ted from a target unnormalised ERGM density. Our test statistics are derived from a kernel Stein discrepancy, a divergence constructed via Steins method using functions in a reproducing kernel Hilbert space, combined with a discrete Stein operator for ERGMs. The test is a Monte Carlo test based on simulated networks from the target ERGM. We show theoretical properties for the testing procedure for a class of ERGMs. Simulation studies and real network applications are presented.
121 - Wenkai Xu , Takeru Matsuda 2020
In many fields, data appears in the form of direction (unit vector) and usual statistical procedures are not applicable to such directional data. In this study, we propose non-parametric goodness-of-fit testing procedures for general directional dist ributions based on kernel Stein discrepancy. Our method is based on Steins operator on spheres, which is derived by using Stokes theorem. Notably, the proposed method is applicable to distributions with an intractable normalization constant, which commonly appear in directional statistics. Experimental results demonstrate that the proposed methods control type-I error well and have larger power than existing tests, including the test based on the maximum mean discrepancy.
We introduce a kernel-based goodness-of-fit test for censored data, where observations may be missing in random time intervals: a common occurrence in clinical trials and industrial life-testing. The test statistic is straightforward to compute, as i s the test threshold, and we establish consistency under the null. Unlike earlier approaches such as the Log-rank test, we make no assumptions as to how the data distribution might differ from the null, and our test has power against a very rich class of alternatives. In experiments, our test outperforms competing approaches for periodic and Weibull hazard functions (where risks are time dependent), and does not show the failure modes of tests that rely on user-defined features. Moreover, in cases where classical tests are provably most powerful, our test performs almost as well, while being more general.
148 - Wenkai Xu , Takeru Matsuda 2021
In many applications, we encounter data on Riemannian manifolds such as torus and rotation groups. Standard statistical procedures for multivariate data are not applicable to such data. In this study, we develop goodness-of-fit testing and interpreta ble model criticism methods for general distributions on Riemannian manifolds, including those with an intractable normalization constant. The proposed methods are based on extensions of kernel Stein discrepancy, which are derived from Stein operators on Riemannian manifolds. We discuss the connections between the proposed tests with existing ones and provide a theoretical analysis of their asymptotic Bahadur efficiency. Simulation results and real data applications show the validity of the proposed methods.
Survival Analysis and Reliability Theory are concerned with the analysis of time-to-event data, in which observations correspond to waiting times until an event of interest such as death from a particular disease or failure of a component in a mechan ical system. This type of data is unique due to the presence of censoring, a type of missing data that occurs when we do not observe the actual time of the event of interest but, instead, we have access to an approximation for it given by random interval in which the observation is known to belong. Most traditional methods are not designed to deal with censoring, and thus we need to adapt them to censored time-to-event data. In this paper, we focus on non-parametric goodness-of-fit testing procedures based on combining the Steins method and kernelized discrepancies. While for uncensored data, there is a natural way of implementing a kernelized Stein discrepancy test, for censored data there are several options, each of them with different advantages and disadvantages. In this paper, we propose a collection of kernelized Stein discrepancy tests for time-to-event data, and we study each of them theoretically and empirically; our experimental results show that our proposed methods perform better than existing tests, including previous tests based on a kernelized maximum mean discrepancy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا