ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact goodness-of-fit testing for the Ising model

505   0   0.0 ( 0 )
 نشر من قبل Abraham Martin del Campo
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecology, sociology, and genetics, usually without testing its goodness of fit. Here, we propose various test statistics and an exact goodness-of-fit test for the finite-lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness-of-fit testing using a Monte Carlo approach. However, finding a Markov basis is often computationally intractable. Thus, we develop a Monte Carlo method for exact goodness-of-fit testing for the Ising model which avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane.



قيم البحث

اقرأ أيضاً

215 - Mikhail Langovoy 2017
We propose and study a general method for construction of consistent statistical tests on the basis of possibly indirect, corrupted, or partially available observations. The class of tests devised in the paper contains Neymans smooth tests, data-driv en score tests, and some types of multi-sample tests as basic examples. Our tests are data-driven and are additionally incorporated with model selection rules. The method allows to use a wide class of model selection rules that are based on the penalization idea. In particular, many of the optimal penalties, derived in statistical literature, can be used in our tests. We establish the behavior of model selection rules and data-driven tests under both the null hypothesis and the alternative hypothesis, derive an explicit detectability rule for alternative hypotheses, and prove a master consistency theorem for the tests from the class. The paper shows that the tests are applicable to a wide range of problems, including hypothesis testing in statistical inverse problems, multi-sample problems, and nonparametric hypothesis testing.
Recently there have been many research efforts in developing generative models for self-exciting point processes, partly due to their broad applicability for real-world applications. However, rarely can we quantify how well the generative model captu res the nature or ground-truth since it is usually unknown. The challenge typically lies in the fact that the generative models typically provide, at most, good approximations to the ground-truth (e.g., through the rich representative power of neural networks), but they cannot be precisely the ground-truth. We thus cannot use the classic goodness-of-fit (GOF) test framework to evaluate their performance. In this paper, we develop a GOF test for generative models of self-exciting processes by making a new connection to this problem with the classical statistical theory of Quasi-maximum-likelihood estimator (QMLE). We present a non-parametric self-normalizing statistic for the GOF test: the Generalized Score (GS) statistics, and explicitly capture the model misspecification when establishing the asymptotic distribution of the GS statistic. Numerical simulation and real-data experiments validate our theory and demonstrate the proposed GS tests good performance.
146 - Nicolas Verzelen 2008
Let $(Y,(X_i)_{iinmathcal{I}})$ be a zero mean Gaussian vector and $V$ be a subset of $mathcal{I}$. Suppose we are given $n$ i.i.d. replications of the vector $(Y,X)$. We propose a new test for testing that $Y$ is independent of $(X_i)_{iin mathcal{I }backslash V}$ conditionally to $(X_i)_{iin V}$ against the general alternative that it is not. This procedure does not depend on any prior information on the covariance of $X$ or the variance of $Y$ and applies in a high-dimensional setting. It straightforwardly extends to test the neighbourhood of a Gaussian graphical model. The procedure is based on a model of Gaussian regression with random Gaussian covariates. We give non asymptotic properties of the test and we prove that it is rate optimal (up to a possible $log(n)$ factor) over various classes of alternatives under some additional assumptions. Besides, it allows us to derive non asymptotic minimax rates of testing in this setting. Finally, we carry out a simulation study in order to evaluate the performance of our procedure.
210 - K. Temme , F. Verstraete 2011
The density matrix in quantum mechanics parameterizes the statistical properties of the system under observation, just like a classical probability distribution does for classical systems. The expectation value of observables cannot be measured direc tly, it can only be approximated by applying classical statistical methods to the frequencies by which certain measurement outcomes (clicks) are obtained. In this paper, we make a detailed study of the statistical fluctuations obtained during an experiment in which a hypothesis is tested, i.e. the hypothesis that a certain setup produces a given quantum state. Although the classical and quantum problem are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. Just as in the case of classical hypothesis testing, the confidence in quantum hypothesis testing scales exponentially in the number of copies. In this paper, we will argue 1) that the physically relevant data of quantum experiments is only contained in the frequencies of the measurement outcomes, and that the statistical fluctuations of the experiment are essential, so that the correct formulation of the conclusions of a quantum experiment should be given in terms of hypothesis tests, 2) that the (classical) $chi^2$ test for distinguishing two quantum states gives rise to the quantum $chi^2$ divergence when optimized over the measurement basis, 3) present a max-min characterization for the optimal measurement basis for quantum goodness of fit testing, find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiency, and determine the associated divergence rates.
156 - H. Dette , B. Hetzler 2008
In the common nonparametric regression model the problem of testing for a specific parametric form of the variance function is considered. Recently Dette and Hetzler (2008) proposed a test statistic, which is based on an empirical process of pseudo r esiduals. The process converges weakly to a Gaussian process with a complicated covariance kernel depending on the data generating process. In the present paper we consider a standardized version of this process and propose a martingale transform to obtain asymptotically distribution free tests for the corresponding Kolmogorov-Smirnov and Cram{e}r-von-Mises functionals. The finite sample properties of the proposed tests are investigated by means of a simulation study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا