ﻻ يوجد ملخص باللغة العربية
We propose and study a general method for construction of consistent statistical tests on the basis of possibly indirect, corrupted, or partially available observations. The class of tests devised in the paper contains Neymans smooth tests, data-driven score tests, and some types of multi-sample tests as basic examples. Our tests are data-driven and are additionally incorporated with model selection rules. The method allows to use a wide class of model selection rules that are based on the penalization idea. In particular, many of the optimal penalties, derived in statistical literature, can be used in our tests. We establish the behavior of model selection rules and data-driven tests under both the null hypothesis and the alternative hypothesis, derive an explicit detectability rule for alternative hypotheses, and prove a master consistency theorem for the tests from the class. The paper shows that the tests are applicable to a wide range of problems, including hypothesis testing in statistical inverse problems, multi-sample problems, and nonparametric hypothesis testing.
This paper has been temporarily withdrawn, pending a revised version taking into account similarities between this paper and the recent work of del Barrio, Gine and Utzet (Bernoulli, 11 (1), 2005, 131-189).
Survival Analysis and Reliability Theory are concerned with the analysis of time-to-event data, in which observations correspond to waiting times until an event of interest such as death from a particular disease or failure of a component in a mechan
The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecolog
Let $(Y,(X_i)_{iinmathcal{I}})$ be a zero mean Gaussian vector and $V$ be a subset of $mathcal{I}$. Suppose we are given $n$ i.i.d. replications of the vector $(Y,X)$. We propose a new test for testing that $Y$ is independent of $(X_i)_{iin mathcal{I
Networks describe the, often complex, relationships between individual actors. In this work, we address the question of how to determine whether a parametric model, such as a stochastic block model or latent space model, fits a dataset well and will