ﻻ يوجد ملخص باللغة العربية
We demonstrate a high-accuracy dual-comb spectrometer centered at 3.4 mu m. The amplitude and phase spectra of the P, Q, and partial R-branch of the methane { u}3 band are measured at 25 MHz to 100 MHz point spacing with ~kHz resolution and a signal-to-noise ratio of up to 3500. A fit of the absorbance and phase spectra yield the center frequency of 132 rovibrational lines. The systematic uncertainty is estimated to be 300 kHz, which is 10-3 of the Doppler width and a tenfold improvement over Fourier transform spectroscopy. These data are the first high- accuracy molecular spectra obtained with a direct comb spectrometer.
Dual-frequency comb spectroscopy has emerged as a disruptive technique for measuring wide-spanning spectra with high resolution, yielding a particularly powerful technique for sensitive multi-component gas analysis. We present a spectrometer system b
Dual-comb spectroscopy has been proven a powerful tool in molecular characterization, which remains challenging to implement in the mid-infrared (MIR) region due to difficulties in the realization of two mutually locked comb sources and efficient pho
Two semiconductor optical frequency combs consuming less than 1 W of electrical power are used to demonstrate high-sensitivity mid-infrared dual-comb spectroscopy in the important 3-4 $mu$m spectral region. The devices are 4 millimeters long by 4 mic
Four-wave-mixing-based quantum cascade laser frequency combs (QCL-FC) are a powerful photonic tool, driving a recent revolution in major molecular fingerprint regions, i.e. mid- and far-infrared domains. Their compact and frequency-agile design, toge
Infrared spectroscopy is a powerful tool for basic and applied science. The molecular spectral fingerprints in the 3 um to 20 um region provide a means to uniquely identify molecular structure for fundamental spectroscopy, atmospheric chemistry, trac