ﻻ يوجد ملخص باللغة العربية
Infrared spectroscopy is a powerful tool for basic and applied science. The molecular spectral fingerprints in the 3 um to 20 um region provide a means to uniquely identify molecular structure for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy. Driven by such applications, the development of low-noise, coherent laser sources with broad, tunable coverage is a topic of great interest. Laser frequency combs possess a unique combination of precisely defined spectral lines and broad bandwidth that can enable the above-mentioned applications. Here, we leverage robust fabrication and geometrical dispersion engineering of silicon nanophotonic waveguides for coherent frequency comb generation spanning 70 THz in the mid-infrared (2.5 um to 6.2 um). Precise waveguide fabrication provides significant spectral broadening and engineered spectra targeted at specific mid-infrared bands. We use this coherent light source for dual-comb spectroscopy at 5 um.
Ability to selectively enhance the amplitude and maintain high coherence of the supercontinuum signal with long pulses is gaining significance. In this work an extra degree of freedom afforded by varying the dispersion profile of a waveguide is utili
We experimentally show octave-spanning supercontinuum generation in a non-stoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in
Waveguide-integrated plasmonics is a growing field with many innovative concepts and demonstrated devices in the visible and near-infrared. Here, we extend this body of work to the mid-infrared for the application of surface-enhanced infrared absorpt
In this paper, we report the design and fabrication of a highly birefringent polarization-maintaining photonic crystal fiber (PM-PCF) made from chalcogenide glass, and its application to linearly-polarized supercontinuum (SC) generation in the mid-in
Dual-comb spectroscopy has been proven a powerful tool in molecular characterization, which remains challenging to implement in the mid-infrared (MIR) region due to difficulties in the realization of two mutually locked comb sources and efficient pho