ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-infrared dual-comb spectroscopy with low drive-power on-chip sources

195   0   0.0 ( 0 )
 نشر من قبل Jonas Westberg
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two semiconductor optical frequency combs consuming less than 1 W of electrical power are used to demonstrate high-sensitivity mid-infrared dual-comb spectroscopy in the important 3-4 $mu$m spectral region. The devices are 4 millimeters long by 4 microns wide, and each emits 8 mW of average optical power. The spectroscopic sensing performance is demonstrated by measurements of methane and hydrogen chloride with a spectral coverage of 33 cm$^{-1}$ (1 THz), 0.32 cm$^{-1}$ (9.7 GHz) frequency sampling interval, and peak signal-to-noise ratio of ~100 at 100 $mu$s integration time. The monolithic design, low drive power, and direct generation of mid-infrared radiation are highly attractive for portable broadband spectroscopic instrumentation in future terrestrial and space applications.

قيم البحث

اقرأ أيضاً

Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high-quality-factor microcavities has hindered the development of an on-chip dual comb source. Here, we report the first simultaneous generation of two microresonator combs on the same chip from a single laser. The combs span a broad bandwidth of 51 THz around a wavelength of 1.56 $mu$m. We demonstrate low-noise operation of both frequency combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow ($<$ 10 kHz) microwave beatnotes. We further use one mode-locked comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate broadband high-SNR absorption spectroscopy of dichloromethane spanning 170 nm using the dual comb source over a 20 $mu$s acquisition time. Our device paves the way for compact and robust dual-comb spectrometers at nanosecond timescales.
Dual-comb spectroscopy has been proven a powerful tool in molecular characterization, which remains challenging to implement in the mid-infrared (MIR) region due to difficulties in the realization of two mutually locked comb sources and efficient pho todetection. An effective way to overcome those limitations is optical upconversion; however, previously reported configurations are either demanding or inefficient. Here we introduce and experimentally demonstrate a variant of dual-comb spectroscopy called cross-comb spectroscopy, in which a MIR comb is upconverted via sum-frequency generation (SFG) with a near-infrared (NIR) comb with a shifted repetition rate and then interfered with a spectral extension of the NIR comb. We experimentally demonstrate a proof-of-concept measurement of atmospheric CO2 around 4.25 micrometer, with a 350-nm instantaneous bandwidth and 25000 resolved comb lines. Cross-comb spectroscopy can be realized using up- or down-conversion and offers an adaptable and efficient alternative to dual-comb spectroscopy outside the well-developed near-IR region, where having two mutually coherent sources and efficient photodetection is challenging. Moreover, the nonlinear gating in cross-comb spectroscopy promises a superior dynamic range compared to dual-comb spectroscopy.
The discovery and characterization of exoplanets around nearby stars is driven by profound scientific questions about the uniqueness of Earth and our Solar System, and the conditions under which life could exist elsewhere in our Galaxy. Doppler spect roscopy, or the radial velocity (RV) technique, has been used extensively to identify hundreds of exoplanets, but with notable challenges in detecting terrestrial mass planets orbiting within habitable zones. We describe infrared RV spectroscopy at the 10 m Hobby-Eberly telescope that leverages a 30 GHz electro-optic laser frequency comb with nanophotonic supercontinuum to calibrate the Habitable Zone Planet Finder spectrograph. Demonstrated instrument precision <10 cm/s and stellar RVs approaching 1 m/s open the path to discovery and confirmation of habitable zone planets around M-dwarfs, the most ubiquitous type of stars in our Galaxy.
Dual-comb spectroscopy is a rapidly developing technique that enables moving parts-free, simultaneously broadband and high-resolution measurements with microseconds of acquisition time. However, for high sensitivity measurements and extended duration of operation, a coherent averaging procedure is essential. To date, most coherent averaging schemes require additional electro-optical components, which increase system complexity and cost. Instead, we propose an all-computational solution that is compatible with real-time architectures and allows for coherent averaging of spectra generated by free-running systems. The efficacy of the computational correction algorithm is demonstrated using spectra acquired with a THz quantum cascade laser-based dual-comb spectrometer.
Dual-comb spectroscopy has emerged as an indispensable analytical technique in applications that require high resolution and broadband coverage within short acquisition times. Its experimental realization, however, remains hampered by intricate exper imental setups with large power consumption. Here, we demonstrate an ultra-simple free-running dual-comb spectrometer realized in a single all-fiber cavity suitable for the most demanding Doppler-limited measurements. Our dual-comb laser utilizes just a few basic fiber components, allows to tailor the repetition rate difference, and requires only 350 mW of electrical power for sustained operation over a dozen of hours. As a demonstration, we measure low-pressure hydrogen cyanide within 1.7 THz bandwidth, and obtain better than 1% precision over a terahertz in 200 ms enabled by a drastically simplified all-computational phase correction algorithm. The combination of the unprecedented setup simplicity, comb tooth resolution and high spectroscopic precision paves the way for proliferation of frequency comb spectroscopy even outside the laboratory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا