ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Cascade Laser Based Hybrid Dual Comb Spectrometer

83   0   0.0 ( 0 )
 نشر من قبل Luigi Consolino
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Four-wave-mixing-based quantum cascade laser frequency combs (QCL-FC) are a powerful photonic tool, driving a recent revolution in major molecular fingerprint regions, i.e. mid- and far-infrared domains. Their compact and frequency-agile design, together with their high optical power and spectral purity, promise to deliver an all-in-one source for the most challenging spectroscopic applications. Here, we demonstrate a metrological-grade hybrid dual comb spectrometer, combining the advantages of a THz QCL-FC with the accuracy and absolute frequency referencing provided by a free-standing, optically-rectified THz frequency comb. A proof-of-principle application to methanol molecular transitions is presented. The multi-heterodyne molecular spectra retrieved provide state-of-the-art results in line-center determination, achieving the same precision as currently available molecular databases. The devised setup provides a solid platform for a new generation of THz spectrometers, paving the way to more refined and sophisticated systems exploiting full phase control of QCL-FCs, or Doppler-free spectroscopic schemes.



قيم البحث

اقرأ أيضاً

291 - D. Lisak 2021
Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectr oscopy without sacrificing orders of magnitude of resolution. We present dual-comb cavity ring-down spectroscopy (DC-CRDS) based on the parallel heterodyne detection of ring-down signals with a local oscillator comb to yield absorption and dispersion spectra. These spectra are obtained from widths and positions of cavity modes. We present two approaches which leverage the dynamic cavity response to coherently or randomly driven changes in the amplitude or frequency of the probe field. Both techniques yield accurate spectra of methane - an important greenhouse gas and breath biomarker. The high sensitivity and accuracy of broadband DC-CRDS, shows promise for applications like studies of the structure and dynamics of large molecules, multispecies trace gas detection and isotopic composition.
A novel design-friendly device called the transistor-injected dual doping quantum cascade laser (TI-D2QCL) with two different doping in each stack of a homogeneous superlattice is proposed. By adjusting the base-emitter bias Vbe of the bipolar transi stor to supply electrons in the dual doping regions, charge quasi-neutrality can be achieved to generate different optical transitions in each cascading superlattice stack. These transitions are then stacked and amplified to contribute to a broad flat gain spectrum. Model calculations of a designed TI- D2QCL show that a broad flat gain spectrum ranging from 9.41um to 12.01um with a relative bandwidth of 0.24 can be obtained, indicating that the TI- D2QCL with dual doping pattern may open a new pathway to the appealing applications in both MIR and THz frequency ranges, from wideband optical generations to advanced frequency comb technologies.
Optical frequency comb synthesizers (FCs) [1] are laser sources covering a broad spectral range with a number of discrete, equally spaced and highly coherent frequency components, fully controlled through only two parameters: the frequency separation between adjacent modes and the carrier offset frequency. Providing a phase-coherent link between the optical and the microwave/radio-frequency regions [2], FCs have become groundbreaking tools for precision measurements[3,4]. Despite these inherent advantages, developing miniaturized comb sources across the whole infrared (IR), with an independent and simultaneous control of the two comb degrees of freedom at a metrological level, has not been possible, so far. Recently, promising results have been obtained with compact sources, namely diode-laser-pumped microresonators [5,6] and quantum cascade lasers (QCL-combs) [7,8]. While both these sources rely on four-wave mixing (FWM) to generate comb frequency patterns, QCL-combs benefit from a mm-scale miniaturized footprint, combined with an ad-hoc tailoring of the spectral emission in the 3-250 {mu}m range, by quantum engineering [9]. Here, we demonstrate full stabilization and control of the two key parameters of a QCL-comb against the primary frequency standard. Our technique, here applied to a far-IR emitter and open ended to other spectral windows, enables Hz-level narrowing of the individual comb modes, and metrological-grade tuning of their individual frequencies, which are simultaneously measured with an accuracy of 2x10^-12, limited by the frequency reference used. These fully-controlled, frequency-scalable, ultra-compact comb emitters promise to pervade an increasing number of mid- and far-IR applications, including quantum technologies, due to the quantum nature of the gain media [10].
We demonstrate simple optical frequency combs based on semiconductor quantum well laser diodes. The frequency comb spectrum can be tailored by choice of material properties and quantum-well widths, providing spectral flexibility. Finally, we demonstr ate the mutual coherence of these devices by using two frequency combs on the same device to generate a radio-frequency dual comb spectrum.
Dual-frequency comb spectroscopy has emerged as a disruptive technique for measuring wide-spanning spectra with high resolution, yielding a particularly powerful technique for sensitive multi-component gas analysis. We present a spectrometer system b ased on dual electro-optical combs with subsequent conversion to the mid-infrared via tunable difference frequency generation, operating in the range from 3 to 4.7 $mu$m. The simultaneously recorded bandwidth is up to 454(1) GHz and a signal-to-noise ratio of 7.3(2) x 10$^2$ Hz$^{-1/2}$ can be reached. The conversion preserves the coherence of the dual-comb within 3 s measurement time. Concentration measurements of 5 ppm methane at 3.3 $mu$m, 100 ppm nitrous oxide at 3.9 $mu$m and a mixture of 15 ppm carbon monoxide and 5 % carbon dioxide at 4.5 $mu$m are presented with a relative precision of 1.4 % in average after 2 s measurement time. The noise-equivalent absorbance is determined to be less than 4.6(2) x 10$^{-3}$ Hz$^{-1/2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا