ﻻ يوجد ملخص باللغة العربية
Four-wave-mixing-based quantum cascade laser frequency combs (QCL-FC) are a powerful photonic tool, driving a recent revolution in major molecular fingerprint regions, i.e. mid- and far-infrared domains. Their compact and frequency-agile design, together with their high optical power and spectral purity, promise to deliver an all-in-one source for the most challenging spectroscopic applications. Here, we demonstrate a metrological-grade hybrid dual comb spectrometer, combining the advantages of a THz QCL-FC with the accuracy and absolute frequency referencing provided by a free-standing, optically-rectified THz frequency comb. A proof-of-principle application to methanol molecular transitions is presented. The multi-heterodyne molecular spectra retrieved provide state-of-the-art results in line-center determination, achieving the same precision as currently available molecular databases. The devised setup provides a solid platform for a new generation of THz spectrometers, paving the way to more refined and sophisticated systems exploiting full phase control of QCL-FCs, or Doppler-free spectroscopic schemes.
Cavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectr
A novel design-friendly device called the transistor-injected dual doping quantum cascade laser (TI-D2QCL) with two different doping in each stack of a homogeneous superlattice is proposed. By adjusting the base-emitter bias Vbe of the bipolar transi
Optical frequency comb synthesizers (FCs) [1] are laser sources covering a broad spectral range with a number of discrete, equally spaced and highly coherent frequency components, fully controlled through only two parameters: the frequency separation
We demonstrate simple optical frequency combs based on semiconductor quantum well laser diodes. The frequency comb spectrum can be tailored by choice of material properties and quantum-well widths, providing spectral flexibility. Finally, we demonstr
Dual-frequency comb spectroscopy has emerged as a disruptive technique for measuring wide-spanning spectra with high resolution, yielding a particularly powerful technique for sensitive multi-component gas analysis. We present a spectrometer system b