ﻻ يوجد ملخص باللغة العربية
In this paper we construct a Chern-Weil isomorphism for the equivariant Brauer group of R^n-actions on a principal torus bundle, where the target for this isomorphism is a dimensionally reduced Cech cohomology group. From this point of view, the usual forgetful functor takes the form of a connecting homomorphism in a long exact sequence in dimensionally reduced cohomology.
In this paper we outline a recent construction of a Chern-Weil isomorphism for the equivariant Brauer group of $mathbb R^n$ actions on a principal torus bundle, where the target for this isomorphism is a dimensionally reduced vCech cohomology group.
Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_Hmathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $^H_Hmathcal{YD}$ trivializable on
We show an equivariant Kirchberg-Phillips-type absorption theorem for pointwise outer actions of discrete amenable groups on Kirchberg algebras with respect to natural model actions on the Cuntz algebras $mathcal{O}_infty$ and $mathcal{O}_2$. This ge
We study super parallel transport around super loops in a quotient stack, and show that this geometry constructs a global version of the equivariant Chern character.
We prove that the isomorphism relation for separable C$^*$-algebras, and also the relations of complete and $n$-isometry for operator spaces and systems, are Borel reducible to the orbit equivalence relation of a Polish group action on a standard Borel space.