We study super parallel transport around super loops in a quotient stack, and show that this geometry constructs a global version of the equivariant Chern character.
This paper is a continuations of the project initiated in the book string topology for stacks. We construct string operations on the SO(2)-equivariant homology of the (free) loop space $L(X)$ of an oriented differentiable stack $X$ and show that $H^{
SO(2)}_{*+dim(X) -2}(L(X))$ is a graded Lie algebra. In the particular case where $X$ is a 2-dimensional orbifold we give a Goldman-type description for the string bracket. To prove these results, we develop a machinery of (weak) group actions on topological stacks which should be of independent interest. We explicitly construct the quotient stack of a group acting on a stack and show that it is a topological stack. Then use its homotopy type to define equivariant (co)homology for stacks, transfer maps, and so on.
We construct a map from $d|1$-dimensional Euclidean field theories to complexified K-theory when $d=1$ and complex analytic elliptic cohomology when $d=2$. This provides further evidence for the Stolz--Teichner program, while also identifying candida
te geometric models for Chern characters within their framework. The construction arises as a higher-dimensional and parameterized generalization of Fei Hans realization of the Chern character in K-theory as dimensional reduction for $1|1$-dimensional Euclidean field theories. In the elliptic case, the main new feature is a subtle interplay between the geometry of the super moduli space of $2|1$-dimensional tori and the derived geometry of complex analytic elliptic cohomology. As a corollary, we obtain an entirely geometric proof that partition functions of $mathcal{N}=(0,1)$ supersymmetric quantum field theories are weak modular forms, following a suggestion of Stolz and Teichner.
Atiyahs classical work on circular symmetry and stationary phase shows how the $hat{A}$-genus is obtained by formally applying the equivariant cohomology localization formula to the loop space of a simply connected spin manifold. The same technique,
applied to a suitable antiholomorphic sector in the $mathbb{C}/Lambda$-equivariant cohomology of the conformal double loop space $mathrm{Maps}(mathbb{C}/Lambda,X)$ of a rationally string manifold $X$ produces the Witten genus of $X$. This can be seen as an equivariant localization counterpart to Berwick-Evans supersymmetric localization derivation of the Witten genus.
This paper generalizes Bismuts equivariant Chern character to the setting of abelian gerbes. In particular, associated to an abelian gerbe with connection, an equivariantly closed differential form is constructed on the space of maps of a torus into
the manifold. These constructions are made explicit using a new local version of the higher Hochschild complex, resulting in differential forms given by iterated integrals. Connections to two dimensional topological field theories are indicated. Similarly, this local higher Hochschild complex is used to calculate the 2-holonomy of an abelian gerbe along any closed oriented surface, as well as the derivative of 2-holonomy, which in the case of a torus fits into a sequence of higher holonomies and their differentials.
We define a map of simplicial presheaves, the Chern character, that assigns to every sequence of composable non connection preserving isomorphisms of vector bundles with holomorphic connections an appropriate sequence of holomorphic forms. We apply t
his Chern character map to the Cech nerve of a good cover of a complex manifold and assemble the data by passing to the totalization to obtain a map of simplicial sets. In simplicial degree 0, this map gives a formula for the Chern character of a bundle in terms of the clutching functions. In simplicial degree 1, this map gives a formula for the Chern character of bundle maps. In each simplicial degree beyond 1, these invariants, defined in terms of the transition functions, govern the compatibilities between the invariants assigned in previous simplicial degrees. In addition to this, we also apply this Chern character to complex Lie groupoids to obtain invariants of bundles on them in terms of the simplicial data. For group actions, these invariants land in suitable complexes calculating various Hodge equivariant cohomologies. In contrast, the de Rham Chern character formula involves additional terms and will appear in a sequel paper. In a sense, these constructions build on a point of view of characteristic classes in terms of transition functions advocated by Raoul Bott, which has been addressed over the years in various forms and degrees, concerning the existence of formulae for the Hodge and de Rham characteristic classes of bundles solely in terms of their clutching functions.