ﻻ يوجد ملخص باللغة العربية
In this paper we outline a recent construction of a Chern-Weil isomorphism for the equivariant Brauer group of $mathbb R^n$ actions on a principal torus bundle, where the target for this isomorphism is a dimensionally reduced vCech cohomology group. Using this latter group, we demonstrate how to extend the induced algebra construction to algebras with a non-trivial bundle as their spectrum.
In this paper we construct a Chern-Weil isomorphism for the equivariant Brauer group of R^n-actions on a principal torus bundle, where the target for this isomorphism is a dimensionally reduced Cech cohomology group. From this point of view, the usua
Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_Hmathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $^H_Hmathcal{YD}$ trivializable on
We show an equivariant Kirchberg-Phillips-type absorption theorem for pointwise outer actions of discrete amenable groups on Kirchberg algebras with respect to natural model actions on the Cuntz algebras $mathcal{O}_infty$ and $mathcal{O}_2$. This ge
Classifying elements of the Brauer group of a variety X over a p-adic field according to the p-adic accuracy needed to evaluate them gives a filtration on Br X. We show that, on the p-torsion, this filtration coincides with a modified version of that
Let $k$ be a field and $X/k$ be a smooth quasiprojective orbifold. Let $Xto underline{X}$ be its coarse moduli space. In this paper we study the Brauer group of $X$ and compare it with the Brauer group of the smooth locus of $underline{X}$.