ﻻ يوجد ملخص باللغة العربية
We show an equivariant Kirchberg-Phillips-type absorption theorem for pointwise outer actions of discrete amenable groups on Kirchberg algebras with respect to natural model actions on the Cuntz algebras $mathcal{O}_infty$ and $mathcal{O}_2$. This generalizes results known for finite groups and poly-$mathbb{Z}$ groups. The model actions are shown to be determined, up to strong cocycle conjugacy, by natural abstract properties, which are verified for some examples of actions arising from tensorial shifts. We also show the following homotopy rigidity result, which may be understood as a precursor to a general Kirchberg-Phillips-type classification theory: If two outer actions of an amenable group on a unital Kirchberg algebra are equivariantly homotopy equivalent, then they are conjugate. This marks the first C*-dynamical classification result up to cocycle conjugacy that is applicable to actions of all amenable groups.
In this paper, we study discrete spectrum of invariant measures for countable discrete amenable group actions. We show that an invariant measure has discrete spectrum if and only if it has bounded measure complexity. We also prove that, discrete sp
The paper offers a thorough study of multiorders and their applications to measure-preserving actions of countable amenable groups. By a multiorder on a countable group we mean any probability measure $ u$ on the collection $mathcal O$ of linear orde
In this short note, for countably infinite amenable group actions, we provide topological proofs for the following results: Bowen topological entropy (dimensional entropy) of the whole space equals the usual topological entropy along tempered F{o}lne
We define the topological pressure for any sub-additive potentials of the countable discrete amenable group action and any given open cover. A local variational principle for the topological pressure is established.
In this paper, we establish a connection between Rokhlin dimension and the absorption of certain model actions on strongly self-absorbing C*-algebras. Namely, as to be made precise in the paper, let $G$ be a well-behaved locally compact group. If $ma