ﻻ يوجد ملخص باللغة العربية
A new method for the solution of initial-boundary value problems for textit{linear} and textit{integrable nonlinear} evolution PDEs in one spatial dimension was introduced by one of the authors in 1997 cite{F1997}. This approach was subsequently extended to initial-boundary value problems for evolution PDEs in two spatial dimensions, first in the case of linear PDEs cite{F2002b} and, more recently, in the case of integrable nonlinear PDEs, for the Davey-Stewartson and the Kadomtsev-Petviashvili II equations on the half-plane (see cite{FDS2009} and cite{MF2011} respectively). In this work, we study the analogous problem for the Kadomtsev-Petviashvili I equation; in particular, through the simultaneous spectral analysis of the associated Lax pair via a d-bar formalism, we are able to obtain an integral representation for the solution, which involves certain transforms of all the initial and the boundary values, as well as an identity, the so-called global relation, which relates these transforms in appropriate regions of the complex spectral plane.
The KPII equation is an integrable nonlinear PDE in 2+1 dimensions (two spatial and one temporal), which arises in several physical circumstances, including fluid mechanics where it describes waves in shallow water. It provides a multidimensional gen
A generalized Kadomtsev-Petviashvili equation, describing water waves in oceans of varying depth, density and vorticity is discussed. A priori, it involves 9 arbitrary functions of one, or two variables. The conditions are determined under which the
A characterization of the Kadomtsev-Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of
This is a short review of the Kadomtsev-Petviashvili hierarchies of types B and C. The main objects are the $L$-operator, the wave operator, the auxiliary linear problems for the wave function, the bilinear identity for the wave function and the tau-
In this paper we establish the local and global well-posedness of the real valued fifth order Kadomstev-Petviashvili I equation in the anisotropic Sobolev spaces with nonnegative indices. In particular, our local well-posedness improves Saut-Tzvetkov