ﻻ يوجد ملخص باللغة العربية
A generalized Kadomtsev-Petviashvili equation, describing water waves in oceans of varying depth, density and vorticity is discussed. A priori, it involves 9 arbitrary functions of one, or two variables. The conditions are determined under which the equation allows an infinite dimensional symmetry algebra. This algebra can involve up to three arbitrary functions of time. It depends on precisely three such functions if and only if it is completely integrable.
A characterization of the Kadomtsev-Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of
This is a short review of the Kadomtsev-Petviashvili hierarchies of types B and C. The main objects are the $L$-operator, the wave operator, the auxiliary linear problems for the wave function, the bilinear identity for the wave function and the tau-
The KPII equation is an integrable nonlinear PDE in 2+1 dimensions (two spatial and one temporal), which arises in several physical circumstances, including fluid mechanics where it describes waves in shallow water. It provides a multidimensional gen
A new method for the solution of initial-boundary value problems for textit{linear} and textit{integrable nonlinear} evolution PDEs in one spatial dimension was introduced by one of the authors in 1997 cite{F1997}. This approach was subsequently exte
The conditions for a generalized Burgers equation which a priori involves nine arbitrary functions of one, or two variables to allow an infinite dimensional symmetry algebra are determined. Though this algebra can involve up to two arbitrary function