ترغب بنشر مسار تعليمي؟ اضغط هنا

Well-posedness of the Fifth Order Kadomtsev-Petviashvili I Equation in Anisotropic Sobolev Spaces with Nonnegative Indices

125   0   0.0 ( 0 )
 نشر من قبل Junfeng Li
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we establish the local and global well-posedness of the real valued fifth order Kadomstev-Petviashvili I equation in the anisotropic Sobolev spaces with nonnegative indices. In particular, our local well-posedness improves Saut-Tzvetkovs one and our global well-posedness gives an affirmative answer to Saut-Tzvetkovs $L^2$-data conjecture.

قيم البحث

اقرأ أيضاً

A new method for the solution of initial-boundary value problems for textit{linear} and textit{integrable nonlinear} evolution PDEs in one spatial dimension was introduced by one of the authors in 1997 cite{F1997}. This approach was subsequently exte nded to initial-boundary value problems for evolution PDEs in two spatial dimensions, first in the case of linear PDEs cite{F2002b} and, more recently, in the case of integrable nonlinear PDEs, for the Davey-Stewartson and the Kadomtsev-Petviashvili II equations on the half-plane (see cite{FDS2009} and cite{MF2011} respectively). In this work, we study the analogous problem for the Kadomtsev-Petviashvili I equation; in particular, through the simultaneous spectral analysis of the associated Lax pair via a d-bar formalism, we are able to obtain an integral representation for the solution, which involves certain transforms of all the initial and the boundary values, as well as an identity, the so-called global relation, which relates these transforms in appropriate regions of the complex spectral plane.
We prove global well-posedness of the fifth-order Korteweg-de Vries equation on the real line for initial data in $H^{-1}(mathbb{R})$. By comparison, the optimal regularity for well-posedness on the torus is known to be $L^2(mathbb{R}/mathbb{Z})$. In order to prove this result, we develop a strategy for integrating the local smoothing effect into the method of commuting flows introduced previously in the context of KdV. It is this synthesis that allows us to go beyond the known threshold on the torus.
We study the well-posedness theory for the MHD boundary layer. The boundary layer equations are governed by the Prandtl type equations that are derived from the incompressible MHD system with non-slip boundary condition on the velocity and perfectly conducting condition on the magnetic field. Under the assumption that the initial tangential magnetic field is not zero, we establish the local-in-time existence, uniqueness of solution for the nonlinear MHD boundary layer equations. Compared with the well-posedness theory of the classical Prandtl equations for which the monotonicity condition of the tangential velocity plays a crucial role, this monotonicity condition is not needed for MHD boundary layer. This justifies the physical understanding that the magnetic field has a stabilizing effect on MHD boundary layer in rigorous mathematics.
The KPII equation is an integrable nonlinear PDE in 2+1 dimensions (two spatial and one temporal), which arises in several physical circumstances, including fluid mechanics where it describes waves in shallow water. It provides a multidimensional gen eralisation of the renowned KdV equation. In this work, we employ a novel approach recently introduced by one of the authors in connection with the Davey-Stewartson equation cite{FDS2009}, in order to analyse the initial-boundary value problem for the KPII equation formulated on the half-plane. The analysis makes crucial use of the so-called d-bar formalism, as well as of the so-called global relation. A novel feature of boundary as opposed to initial-value problems in 2+1 is that the d-bar formalism now involves a function in the complex plane which is discontinuous across the real axis.
109 - Zihua Guo 2008
We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation [partial_t u+|partial_x|^{1+alpha}partial_x u+uu_x=0, u(x,0)=u_0(x),] is locally well-posed in the Sobolev spaces $H^s$ for $s>1-alpha$ if $0leq alpha leq 1$. The n ew ingredient is that we develop the methods of Ionescu, Kenig and Tataru cite{IKT} to approach the problem in a less perturbative way, in spite of the ill-posedness results of Molinet, Saut and Tzvetkovin cite{MST}. Moreover, as a bi-product we prove that if $0<alpha leq 1$ the corresponding modified equation (with the nonlinearity $pm uuu_x$) is locally well-posed in $H^s$ for $sgeq 1/2-alpha/4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا