ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Three-Nucleon Forces in Lattice QCD

127   0   0.0 ( 0 )
 نشر من قبل Takumi Doi
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Three-nucleon forces (3NF) are investigated from two-flavor lattice QCD simulations. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to determine two-nucleon forces (2NF) and 3NF in the same framework. As a first exploratory study, we extract 3NF in which three nucleons are aligned linearly with an equal spacing. This is the simplest geometrical configuration which reduces the huge computational cost of calculating the NBS wave function. Quantum numbers of the three-nucleon system are chosen to be (I, J^P)=(1/2,1/2^+) (the triton channel). Lattice QCD simulations are performed using N_f=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m_pi= 1.13 GeV. We find repulsive 3NF at short distance in the triton channel. Several sources of systematic errors are also discussed.



قيم البحث

اقرأ أيضاً

We explore three-nucleon forces (3NF) from lattice QCD simulations. Utilizing the Nambu-Bethe-Salpeter (NBS) wave function, two-nucleon forces (2NF) and 3NF are determined on the same footing. Quantum numbers of the three-nucleon (3N) system are chos en to be (I, J^P)=(1/2,1/2^+) (the triton channel). The enormous computational cost is reduced by employing the simplest geometrical configuration, where 3N are aligned linearly with an equal spacing. We perform lattice QCD simulations using Nf=2 dynamical clover fermion configurations generated by CP-PACS Collaboration, at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m(pi) = 1.13 GeV. Repulsive 3NF is found at short distance.
We investigate three-nucleon forces (3NF) from lattice QCD simulations, utilizing the Nambu-Bethe-Salpeter (NBS) wave function to determine two-nucleon forces (2NF) and 3NF on the same footing. Quantum numbers of the three-nucleon (3N) system are cho sen to be (I, J^P)=(1/2, 1/2^+) (the triton channel). We consider the simplest geometrical configuration where 3N are aligned linearly with an equal spacing, to reduce the enormous computational cost. Lattice QCD simulations are performed using Nf=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m(pi) = 1.13 GeV. We find repulsive 3NF at short distance.
241 - C. Alexandrou 2010
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a re investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
202 - C. Alexandrou 2011
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off eff ects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.
We study the three nucleon force in the triton channel using dynamical clover fermion lattice QCD. The Nambu-Bethe-Salpeter wave function is utilized to obtain the potentials among three nucleons. Since the straightforward calculation is prohibitivel y expensive, two different frameworks are developed to meet the challenge. In the first method, we study the effective two nucleon potentials in the three nucleon system, where the differences between the effective two nucleon potentials and the genuine two nucleon potentials correspond to the three nucleon system effect, part of which is originated from the three nucleon force. The calculation is performed using Nf=2 clover fermion at m(pi)= 1.13GeV generated by CP-PACS Collaboration, and Nf=2+1 clover fermion at m(pi)= 0.70, 0.57GeV generated by PACS-CS Collaboration. In the second method, we study the three nucleon system with 3D-configuration of nucleons fixed. This enables us to extract the three nucleon force directly, if both of parity-even and parity-odd two nucleon potentials are provided. Since parity-odd two nucleon potentials are not available in lattice QCD at this moment, we propose a new general procedure to identify the three nucleon force using only parity-even two nucleon potentials. The calculation are performed with Nf=2 clover fermion at m(pi)= 1.13GeV generated by CP-PACS Collaboration, employing the linear setup for the 3D-configuration. Preliminary results for the scalar/isoscalar three nucleon force are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا