ترغب بنشر مسار تعليمي؟ اضغط هنا

The study of the Three Nucleon Force in full QCD Lattice calculations

391   0   0.0 ( 0 )
 نشر من قبل Takumi Doi
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the three nucleon force in the triton channel using dynamical clover fermion lattice QCD. The Nambu-Bethe-Salpeter wave function is utilized to obtain the potentials among three nucleons. Since the straightforward calculation is prohibitively expensive, two different frameworks are developed to meet the challenge. In the first method, we study the effective two nucleon potentials in the three nucleon system, where the differences between the effective two nucleon potentials and the genuine two nucleon potentials correspond to the three nucleon system effect, part of which is originated from the three nucleon force. The calculation is performed using Nf=2 clover fermion at m(pi)= 1.13GeV generated by CP-PACS Collaboration, and Nf=2+1 clover fermion at m(pi)= 0.70, 0.57GeV generated by PACS-CS Collaboration. In the second method, we study the three nucleon system with 3D-configuration of nucleons fixed. This enables us to extract the three nucleon force directly, if both of parity-even and parity-odd two nucleon potentials are provided. Since parity-odd two nucleon potentials are not available in lattice QCD at this moment, we propose a new general procedure to identify the three nucleon force using only parity-even two nucleon potentials. The calculation are performed with Nf=2 clover fermion at m(pi)= 1.13GeV generated by CP-PACS Collaboration, employing the linear setup for the 3D-configuration. Preliminary results for the scalar/isoscalar three nucleon force are presented.



قيم البحث

اقرأ أيضاً

We investigate three-nucleon forces (3NF) from lattice QCD simulations, utilizing the Nambu-Bethe-Salpeter (NBS) wave function to determine two-nucleon forces (2NF) and 3NF on the same footing. Quantum numbers of the three-nucleon (3N) system are cho sen to be (I, J^P)=(1/2, 1/2^+) (the triton channel). We consider the simplest geometrical configuration where 3N are aligned linearly with an equal spacing, to reduce the enormous computational cost. Lattice QCD simulations are performed using Nf=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m(pi) = 1.13 GeV. We find repulsive 3NF at short distance.
The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm)^3. We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 7% statistical errors.
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independen t generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel.
137 - Takumi Doi , Sinya Aoki 2011
Three-nucleon forces (3NF) are investigated from two-flavor lattice QCD simulations. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to determine two-nucleon forces (2NF) and 3NF in the same framework. As a first exploratory study, we extract 3NF in which three nucleons are aligned linearly with an equal spacing. This is the simplest geometrical configuration which reduces the huge computational cost of calculating the NBS wave function. Quantum numbers of the three-nucleon system are chosen to be (I, J^P)=(1/2,1/2^+) (the triton channel). Lattice QCD simulations are performed using N_f=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m_pi= 1.13 GeV. We find repulsive 3NF at short distance in the triton channel. Several sources of systematic errors are also discussed.
Moments of the quark density, helicity, and transversity distributions are calculated in unquenched lattice QCD. Calculations of proton matrix elements of operators corresponding to these moments through the operator product expansion have been perfo rmed on $16^3 times 32$ lattices for Wilson fermions at $beta = 5.6$ using configurations from the SESAM collaboration and at $beta = 5.5$ using configurations from SCRI. One-loop perturbative renormalization corrections are included. At quark masses accessible in present calculations, there is no statistically significant difference between quenched and full QCD results, indicating that the contributions of quark-antiquark excitations from the Dirac Sea are small. Close agreement between calculations with cooled configurations containing essentially only instantons and the full gluon configurations indicates that quark zero modes associated with instantons play a dominant role. Naive linear extrapolation of the full QCD calculation to the physical pion mass yields results inconsistent with experiment. Extrapolation to the chiral limit including the physics of the pion cloud can resolve this discrepancy and the requirements for a definitive chiral extrapolation are described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا