ترغب بنشر مسار تعليمي؟ اضغط هنا

The Lattice QCD Study of the Three-Nucleon Force

90   0   0.0 ( 0 )
 نشر من قبل Takumi Doi
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate three-nucleon forces (3NF) from lattice QCD simulations, utilizing the Nambu-Bethe-Salpeter (NBS) wave function to determine two-nucleon forces (2NF) and 3NF on the same footing. Quantum numbers of the three-nucleon (3N) system are chosen to be (I, J^P)=(1/2, 1/2^+) (the triton channel). We consider the simplest geometrical configuration where 3N are aligned linearly with an equal spacing, to reduce the enormous computational cost. Lattice QCD simulations are performed using Nf=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m(pi) = 1.13 GeV. We find repulsive 3NF at short distance.

قيم البحث

اقرأ أيضاً

We study the three nucleon force in the triton channel using dynamical clover fermion lattice QCD. The Nambu-Bethe-Salpeter wave function is utilized to obtain the potentials among three nucleons. Since the straightforward calculation is prohibitivel y expensive, two different frameworks are developed to meet the challenge. In the first method, we study the effective two nucleon potentials in the three nucleon system, where the differences between the effective two nucleon potentials and the genuine two nucleon potentials correspond to the three nucleon system effect, part of which is originated from the three nucleon force. The calculation is performed using Nf=2 clover fermion at m(pi)= 1.13GeV generated by CP-PACS Collaboration, and Nf=2+1 clover fermion at m(pi)= 0.70, 0.57GeV generated by PACS-CS Collaboration. In the second method, we study the three nucleon system with 3D-configuration of nucleons fixed. This enables us to extract the three nucleon force directly, if both of parity-even and parity-odd two nucleon potentials are provided. Since parity-odd two nucleon potentials are not available in lattice QCD at this moment, we propose a new general procedure to identify the three nucleon force using only parity-even two nucleon potentials. The calculation are performed with Nf=2 clover fermion at m(pi)= 1.13GeV generated by CP-PACS Collaboration, employing the linear setup for the 3D-configuration. Preliminary results for the scalar/isoscalar three nucleon force are presented.
84 - Takumi Doi , Sinya Aoki 2011
Three-nucleon forces (3NF) are investigated from two-flavor lattice QCD simulations. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to determine two-nucleon forces (2NF) and 3NF in the same framework. As a first exploratory study, we extract 3NF in which three nucleons are aligned linearly with an equal spacing. This is the simplest geometrical configuration which reduces the huge computational cost of calculating the NBS wave function. Quantum numbers of the three-nucleon system are chosen to be (I, J^P)=(1/2,1/2^+) (the triton channel). Lattice QCD simulations are performed using N_f=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m_pi= 1.13 GeV. We find repulsive 3NF at short distance in the triton channel. Several sources of systematic errors are also discussed.
The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon operators built from products of plane-wave nucleon s, hexaquark operators built from six localized quarks, and quasi-local operators inspired by two-nucleon bound-state wavefunctions in low-energy effective theories. Sparsening techniques are used to compute the timeslice-to-all quark propagators required to form correlation-function matrices using products of these operators. Projection of these matrices onto irreducible representations of the cubic group, including spin-orbit coupling, is detailed. Variational methods are applied to constrain the low-energy spectra of two-nucleon systems in a single finite volume with quark masses corresponding to a pion mass of 806 MeV. Results for S- and D-wave phase shifts in the isospin singlet and triplet channels are obtained under the assumption that partial-wave mixing is negligible. Tests of interpolating-operator dependence are used to investigate the reliability of the energy spectra obtained and highlight both the strengths and weaknesses of variational methods. These studies and comparisons to previous studies using the same gauge-field ensemble demonstrate that interpolating-operator dependence can lead to significant effects on the two-nucleon energy spectra obtained using both variational and non-variational methods, including missing energy levels and other discrepancies. While this study is inconclusive regarding the presence of two-nucleon bound states at this quark mass, it provides robust upper bounds on two-nucleon energy levels that can be improved in future calculations using additional interpolating operators and is therefore a step toward reliable nuclear spectroscopy from the underlying Standard Model of particle physics.
The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm)^3. We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 7% statistical errors.
By introducing an additional operator into the action and using the Feynman-Hellmann theorem we describe a method to determine both the quark line connected and disconnected terms of matrix elements. As an illustration of the method we calculate the gluon contribution (chromo-electric and chromo-magnetic components) to the nucleon mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا