ترغب بنشر مسار تعليمي؟ اضغط هنا

Axial Nucleon form factors from lattice QCD

247   0   0.0 ( 0 )
 نشر من قبل Constantia Alexandrou
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف C. Alexandrou




اسأل ChatGPT حول البحث

We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.



قيم البحث

اقرأ أيضاً

115 - C. Alexandrou 2020
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the stra nge and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis.
We report a calculation of the nucleon axial form factors $G_A^q(Q^2)$ and $G_P^q(Q^2)$ for all three light quark flavors $qin{u,d,s}$ in the range $0leq Q^2lesssim 1.2text{ GeV}^2$ using lattice QCD. This work was done using a single ensemble with p ion mass 317 MeV and made use of the hierarchical probing technique to efficiently evaluate the required disconnected loops. We perform nonperturbative renormalization of the axial current, including a nonperturbative treatment of the mixing between light and strange currents due to the singlet-nonsinglet difference caused by the axial anomaly. The form factor shapes are fit using the model-independent $z$ expansion. From $G_A^q(Q^2)$, we determine the quark contributions to the nucleon spin and axial radii. By extrapolating the isovector $G_P^{u-d}(Q^2)$, we obtain the induced pseudoscalar coupling relevant for ordinary muon capture and the pion-nucleon coupling constant. We find that the disconnected contributions to $G_P$ form factors are large, and give an interpretation based on the dominant influence of the pseudoscalar poles in these form factors.
107 - C. Alexandrou 2006
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a l owest pion mass of about 400 MeV. In the full theory we use a lattice of spatial size 1.9 fm at beta=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. We compare our lattice results to the isovector part of the experimentally measured form factors.
195 - C. Alexandrou 2011
We present the first calculation on the $Delta$ axial-vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to $Delta$ axia l transition coupling constant and $Delta$ axial charge.
We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6 with $m_pi = 340 text{MeV}$ and lattice spacing $a sim 0.05 text{fm}$. The relevant three-point functions were computed with source-sink separations ranging from $t_s sim 0.6 text{fm}$ to $t_s sim 1.4 text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا