ﻻ يوجد ملخص باللغة العربية
Practical application of Gauss law in acoustics is not a very well known method. However, any inverse square law behavior can be formulated in the way similar to Gauss law, which allows us to extend the same principle to sound waves propagation. We show in this paper how the acoustic power of sound source can be related to the sound intensity flow through a given surface by means of the Gauss law. Several different sound-source shapes, important in practical applications, are analyzed by means of the Gauss law. A suitable choice of the Gaussian surface allows us to obtain the simple and straightforward method for calculating the sound intensity distribution in space.
We consider linear and nonlinear waves in a stratified hydrostatic fluid within a channel of variable area, under the restriction of one-dimensional flow. We derive a modified version of Riemanns invariant that is related to the wave luminosity. This
The contact angle that a liquid drop makes on a soft substrate does not obey the classical Youngs relation, since the solid is deformed elastically by the action of the capillary forces. The finite elasticity of the solid also renders the contact ang
The 4/5-law of turbulence, which characterizes the energy cascade from large to small-sized eddies at high Reynolds numbers in classical fluids, is verified experimentally in a superfluid 4He wind tunnel, operated down to 1.56 K and up to R_lambda ~
How to determine accurately and efficiently the aerodynamic forces of the aircraft in high-speed flow is one of great challenges in modern aerodynamics. In this Letter we propose a new similarity law for steady transonic-supersonic flow over thin bod
The four-fifths law for third-order longitudinal moments is examined, by the use of direct numerical simulation data on three-dimensional forced incompressible magnetohydrodynamic (MHD) turbulence without a uniformly imposed magnetic field in a perio