ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy cascade and the four-fifths law in superfluid turbulence

142   0   0.0 ( 0 )
 نشر من قبل Philippe-E. Roche
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 4/5-law of turbulence, which characterizes the energy cascade from large to small-sized eddies at high Reynolds numbers in classical fluids, is verified experimentally in a superfluid 4He wind tunnel, operated down to 1.56 K and up to R_lambda ~ 1640. The result is corroborated by high-resolution simulations of Landau-Tiszas two-fluid model down to 1.15 K, corresponding to a residual normal fluid concentration below 3 % but with a lower Reynolds number of order R_lambda ~ 100. Although the Karman-Howarth equation (including a viscous term) is not valid emph{a priori} in a superfluid, it is found that it provides an empirical description of the deviation from the ideal 4/5-law at small scales and allows us to identify an effective viscosity for the superfluid, whose value matches the kinematic viscosity of the normal fluid regardless of its concentration.

قيم البحث

اقرأ أيضاً

The turbulence of superfluid helium is investigated numerically at finite temperature. Direct numerical simulations are performed with a truncated HVBK model, which combines the continuous description of the Hall-Vinen-Bekeravich-Khalatnikov equation s with the additional constraint that this continuous description cannot extend beyond a quantum length scale associated with the mean spacing between individual superfluid vortices. A good agreement is found with experimental measurements of the vortex density. Besides, by varying the turbulence intensity only, it is observed that the inter-vortex spacing varies with the Reynolds number as $Re^{-3/4}$, like the viscous length scale in classical turbulence. In the high temperature limit, Kolmogorovs inertial cascade is recovered, as expected from previous numerical and experimental studies. As the temperature decreases, the inertial cascade remains present at large scales while, at small scales, the system evolves towards a statistical equipartition of kinetic energy among spectral modes, with a characteristic $k^2$ velocity spectrum. The accumulation of superfluid excitations on a range of mesoscales enables the superfluid to keep dissipating kinetic energy through mutual friction with the residual normal fluid, although the later becomes rare at low temperature. It is found that most of the superfluid vorticity can concentrate on these mesoscales at low temperature, while it is concentrated in the inertial range at higher temperature. This observation should have consequences on the interpretation of decaying turbulence experiments, which are often based on vortex line density measurements.
We present velocity spectra measured in three cryogenic liquid 4He steady flows: grid and wake flows in a pressurized wind tunnel capable of achieving mean velocities up to 5 m/s at temperatures above and below the superfluid transition, down to 1.7 K, and a chunk turbulence flow at 1.55 K, capable of sustaining mean superfluid velocities up to 1.3 m/s. Depending on the flows, the stagnation pressure probes used for anemometry are resolving from one to two decades of the inertial regime of the turbulent cascade. We do not find any evidence that the second order statistics of turbulence below the superfluid transition differ from the ones of classical turbulence, above the transition.
The four-fifths law for third-order longitudinal moments is examined, by the use of direct numerical simulation data on three-dimensional forced incompressible magnetohydrodynamic (MHD) turbulence without a uniformly imposed magnetic field in a perio dic box. The magnetic Prandtl number is set to one, and the number of grid points is $512^3$. A generalized Karman-Howarth-Kolmogorov equation for second-order velocity moments in isotropic MHD turbulence is extended to anisotropic MHD turbulence by means of a spherical average over the direction of $textbf{r}$. Here, $textbf{r}$ is a separation vector. The viscous, forcing, anisotropy and nonstationary terms in the generalized equation are quantified. It is found that the influence of the anisotropic terms on the four-fifths law is negligible at small scales, compared to that of the viscous term. However, the influence of the directional anisotropy, which is measured by the departure of the third-order moments in a particular direction of $textbf{r}$ from the spherically averaged ones, on the four-fifths law is suggested to be substantial, at least in the case studied here.
The conventional approach to the turbulent energy cascade, based on Richardson-Kolmogorov phenomenology, ignores the topology of emerging vortices, which is related to the helicity of the turbulent flow. It is generally believed that helicity can pla y a significant role in turbulent systems, e.g., supporting the generation of large-scale magnetic fields, but its impact on the energy cascade to small scales has never been observed. We suggest for the first time a generalized phenomenology for isotropic turbulence with an arbitrary spectral distribution of the helicity. We discuss various scenarios of direct turbulent cascades with new helicity effect, which can be interpreted as a hindering of the spectral energy transfer. Therefore the energy is accumulated and redistributed so that the efficiency of non-linear interactions will be sufficient to provide a constant energy flux. We confirm our phenomenology by high Reynolds number numerical simulations based on a shell model of helical turbulence. The energy in our model is injected at a certain large scale only, whereas the source of helicity is distributed over all scales. In particular, we found that the helical bottleneck effect can appear in the inertial interval of the energy spectrum.
We investigate non-equilibrium turbulence where the non-dimensionalised dissipation coefficient $C_{varepsilon}$ scales as $C_{varepsilon} sim Re_{M}^{m}/Re_{ell}^{n}$ with $mapprox 1 approx n$ ($Re_M$ and $Re_{ell}$ are global/inlet and local Reynol ds numbers respectively) by measuring the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production and transport in the lee of a square-mesh grid and compare with a region of equilibrium turbulence (i.e. where $C_{varepsilon}approx mathrm{constant}$). These are the main terms of the inhomogeneous, anisotropic version of the von K{a}rm{a}n-Howarth-Monin equation. It is shown in the grid-generated turbulence studied here that, even in the presence of non-negligible turbulence production and transport, production and transport are large-scale phenomena that do not contribute to the scale-by-scale balance for scales smaller than about a third of the integral-length scale, $ell$, and therefore do not affect the energy transfer to the small-scales. In both the non-equilibrium and the equilibrium decay regions, the peak of the scale-by-scale energy transfer scales as $(overline{u^2})^{3/2}/ell$ ($overline{u^2}$ is the variance of the longitudinal fluctuating velocity). In the non-equilibrium case this scaling implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the further downstream equilibrium region where $C_{varepsilon} approx mathrm{constant}$ even though $Re_{ell}$ is lower.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا