ﻻ يوجد ملخص باللغة العربية
We consider linear and nonlinear waves in a stratified hydrostatic fluid within a channel of variable area, under the restriction of one-dimensional flow. We derive a modified version of Riemanns invariant that is related to the wave luminosity. This quantity obeys a simple dynamical equation in linear theory, from which the rules of wave reflection are easily discerned; and it is adiabatically conserved in the high-frequency limit. Following a suggestion by Lighthill, we apply the linear adiabatic invariant to predict mildly nonlinear waves. This incurs only moderate error. We find that Lighthills criterion for shock formation is essentially exact for leading shocks, and for shocks within high-frequency waves. We conclude that approximate invariants can be used to accurately predict the self-distortion of low-amplitude acoustic pulses, as well as the dissipation patterns of weak shocks, in complicated environments such as stellar envelopes. We also identify fully nonlinear solutions for a restricted class of problems.
Kraichnan seminal ideas on inverse cascades yielded new tools to study common phenomena in geophysical turbulent flows. In the atmosphere and the oceans, rotation and stratification result in a flow that can be approximated as two-dimensional at very
To investigate the formation mechanism of energy spectra of internal waves in the oceans, direct numerical simulations are performed. The simulations are based on the reduced dynamical equations of rotating stratified turbulence. In the reduced dynam
The 2D second-mode is a potent instability in hypersonic boundary layers (HBLs). We study its linear and nonlinear evolution, followed by its role in transition and eventual breakdown of the HBL into a fully turbulent state. Linear stability theory (
A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on a combined effect of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A couple
Practical application of Gauss law in acoustics is not a very well known method. However, any inverse square law behavior can be formulated in the way similar to Gauss law, which allows us to extend the same principle to sound waves propagation. We s