ﻻ يوجد ملخص باللغة العربية
We study the ferromagnetism of Ga1-xMnxAs by using a model Hamiltonian, based on an impurity band and the anti-ferromagnetic exchange interaction between the spins of Mn atoms and the charge carriers in the impurity band. Based on the mean field approach we calculate the spontaneous magnetization as a function of temperature and the ferromagnetic transition temperature as a function of the Mn concentration. The random distribution of Mn impurities is taken into account by Matsubara and Toyozawa theory of impurities in semiconductors. We compare our results with experiments and other theoretical findings.
Role of localized magnetic moments in metal-insulator transitions lies at the heart of modern condensed matter physics, for example, the mechanism of high T$_{c}$ superconductivity, the nature of non-Fermi liquid physics near heavy fermion quantum cr
Magnetic properties of Ga$_{1-x}$Mn$_x$N are studied theoretically by employing a tight binding approach to determine exchange integrals $J_{ij}$ characterizing the coupling between Mn spin pairs located at distances $R_{ij}$ up to the 16th cation co
In a recent Letter, Berciu and Bhatt have presented a mean-field theory of ferromagnetism in III-V semiconductors doped with manganese, starting from an impurity band model. We show that this approach gives an unphysically broad impurity band and is
The author reviews the present understanding of the hole-mediated ferromagnetism in magnetically doped semiconductors and oxides as well as the origin of high temperature ferromagnetism in materials containing no valence band holes. It is argued that
We suggest an approach to account for spatial (composition) and thermal fluctuations in disordered magnetic models (e.g. Heisenberg, Ising) with given spatial dependence of magnetic spin-spin interaction. Our approach is based on introduction of fluc