ﻻ يوجد ملخص باللغة العربية
In a recent Letter, Berciu and Bhatt have presented a mean-field theory of ferromagnetism in III-V semiconductors doped with manganese, starting from an impurity band model. We show that this approach gives an unphysically broad impurity band and is thus not appropriate for (Ga,Mn)As containing 1-5% Mn. We also point out a microscopically unmotivated sign change in the overlap integrals in the Letter. Without this sign change, stable ferromagnetism is not obtained.
We suggest an approach to account for spatial (composition) and thermal fluctuations in disordered magnetic models (e.g. Heisenberg, Ising) with given spatial dependence of magnetic spin-spin interaction. Our approach is based on introduction of fluc
We study the ferromagnetism of Ga1-xMnxAs by using a model Hamiltonian, based on an impurity band and the anti-ferromagnetic exchange interaction between the spins of Mn atoms and the charge carriers in the impurity band. Based on the mean field appr
By using very general arguments, we show that the entropy loss conjecture at the glass transition violates the second law of thermodynamics and must be rejected.
Local ultrafast optical excitation of electron-hole pairs in disordered semiconductors provides the possibility to observe experimentally interaction-assisted propagation of correlated quantum particles in a disordered environment. In addition to the
We consider the two-dimensional randomly site diluted Ising model and the random-bond +-J Ising model (also called Edwards-Anderson model), and study their critical behavior at the paramagnetic-ferromagnetic transition. The critical behavior of therm