ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of ferromagnetism driven by superexchange in dilute magnetic semiconductors

215   0   0.0 ( 0 )
 نشر من قبل Constantinos Simserides Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic properties of Ga$_{1-x}$Mn$_x$N are studied theoretically by employing a tight binding approach to determine exchange integrals $J_{ij}$ characterizing the coupling between Mn spin pairs located at distances $R_{ij}$ up to the 16th cation coordination sphere in zinc-blende GaN. It is shown that for a set of experimentally determined input parameters there are no itinerant carriers and the coupling between localized Mn$^{3+}$ spins in GaN proceeds via superexchange that is ferromagnetic for all explored $R_{ij}$ values. Extensive Monte Carlo simulations serve to evaluate the magnitudes of Curie temperature $T_mathrm{C}$ by the cumulant crossing method. The theoretical values of $T_mathrm{C}(x)$ are in quantitative agreement with the experimental data that are available for Ga$_{1-x}$Mn$_x$N with randomly distributed Mn$^{3+}$ ions with the concentrations $0.01 leq x leq 0.1$.



قيم البحث

اقرأ أيضاً

We study the ferromagnetism of Ga1-xMnxAs by using a model Hamiltonian, based on an impurity band and the anti-ferromagnetic exchange interaction between the spins of Mn atoms and the charge carriers in the impurity band. Based on the mean field appr oach we calculate the spontaneous magnetization as a function of temperature and the ferromagnetic transition temperature as a function of the Mn concentration. The random distribution of Mn impurities is taken into account by Matsubara and Toyozawa theory of impurities in semiconductors. We compare our results with experiments and other theoretical findings.
230 - Tomasz Dietl 2007
The author reviews the present understanding of the hole-mediated ferromagnetism in magnetically doped semiconductors and oxides as well as the origin of high temperature ferromagnetism in materials containing no valence band holes. It is argued that in these systems spinodal decomposition into regions with a large and a small concentration of magnetic component takes place. This self-organized assembling of magnetic nanocrystals can be controlled by co-doping and growth conditions. Functionalities of these multicomponent systems are described together with prospects for their applications in spintronics, nanoelectronics, photonics, plasmonics, and thermoelectrics.
251 - Tomasz Dietl 2011
Over the last decade the search for compounds combining the resources of semiconductors and ferromagnets has evolved into an important field of materials science. This endeavour has been fuelled by continual demonstrations of remarkable low-temperatu re functionalities found for ferromagnetic structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample observations of ferromagnetic signatures at high temperatures in a number of non-metallic systems. In this paper, recent experimental and theoretical developments are reviewed emphasising that, from the one hand, they disentangle many controversies and puzzles accumulated over the last decade and, on the other, offer new research prospects.
Cubic heterostructured (BA) particles of Prussian blue analogues, composed of a shell of ferromagnetic K_{0.3}Ni[Cr(CN)_6]_{0.8} cdot 1.3H_2O (A), Tc ~ 70 K, surrounding a bulk core of photoactive ferrimagnetic Rb_{0.4}Co[Fe(CN)_6]_{0.8} cdot 1.2H_2O (B), Tc ~20 K, have been studied. Below Tc ~ 70 K, these samples exhibit a persistent photoinduced decrease in low-field magnetization, and these results resemble data from other core-shell particles and analogous ABA heterostructured films. This net decrease suggests that the photoinduced lattice expansion in the B layer generates a strain-induced decrease in the magnetization of the A layer, similar to a pressure-induced decrease observed by others in a pure A-like material and by us in our BA cubes. Upon further examination, the data also reveal a significant portion of the A material whose superexchange, J, is perturbed by the photoinduced strain from the B constituent.
121 - Kyoung-Min Kim , Yong-Soo Jho , 2014
Role of localized magnetic moments in metal-insulator transitions lies at the heart of modern condensed matter physics, for example, the mechanism of high T$_{c}$ superconductivity, the nature of non-Fermi liquid physics near heavy fermion quantum cr iticality, the problem of metal-insulator transitions in doped semiconductors, and etc. Dilute magnetic semiconductors have been studied for more than twenty years, achieving spin polarized electric currents in spite of low Curie temperatures. Replacing semiconductors with topological insulators, we propose the problem of dilute magnetic topological semiconductors. Increasing disorder strength which corresponds to the size distribution of ferromagnetic clusters, we suggest a novel disordered metallic state, where Weyl metallic islands appear to form inhomogeneous mixtures with topological insulating phases. Performing the renormalization group analysis combined with experimental results, we propose a phase diagram in $(lambda_{so},Gamma,T)$, where the spin-orbit coupling $lambda_{so}$ controls a topological phase transition from a topological semiconductor to a semiconductor with temperature $T$ and the distribution for ferromagnetic clusters $Gamma$ gives rise to a novel insulator-metal transition from either a topological insulating or band insulating phase to an inhomogeneously distributed Weyl metallic state with such insulating islands. Since electromagnetic properties in Weyl metal are described by axion electrodynamics, the role of random axion electrodynamics in transport phenomena casts an interesting problem beyond the physics of percolation in conventional disorder-driven metal-insulator transitions. We also discuss how to verify such inhomogeneous mixtures based on atomic force microscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا