ترغب بنشر مسار تعليمي؟ اضغط هنا

Pure bound field theory and structure of atomic energy levels

89   0   0.0 ( 0 )
 نشر من قبل Alexander Kholmetskii
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue the analysis of quantum two-particle bound systems we have started in (Kholmetskii, A.L., Missevitch, O.V. and Yarman, T. Phys. Scr., 82 (2010), 045301), where we re-postulated the Dirac equation for the bound electron in an external EM field based on the requirement of total momentum conservation, when its EM radiation is prohibited. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels like the standard theory. Now we apply the PBFT to the analysis of hyperfine interactions and show the appearance of some important corrections to the energy levels (the 1S-2S interval and hyperfine spin-spin splitting in positronium, 1S and 2S-2P Lamb shift in hydrogen), which remedies considerably the discrepancy between theoretical predictions and experimental results. In particular, the corrected 1S-2S interval and the spin-spin splitting in positronium practically eliminate the available up to date deviation between theoretical and experimental data. The re-estimated classic 2S-2P Lamb shift as well as ground state Lamb shift in the hydrogen atom lead to the proton charge radius rp=0.837(8) fm (from 2S-2P Lamb shift), and rp=0.840(24) fm (from 1S Lamb shift), which corresponds to the latest estimation of proton size via the measurement of 2S-2P Lamb shift in muonic hydrogen, i.e. rp=0.84184(67) fm. We also emphasize the universal character of PBFT, which is applicable to heavy atoms, too, and analyze 2S-2P interval in Li-like uranium. We show that the corrections we introduced provide a better correspondence between the calculated and experimental data than that furnished by the standard approach. The results obtained support our principal idea of the enhancement of the bound EM field in the absence of EM radiation for quantum bound systems.

قيم البحث

اقرأ أيضاً

We report on a theoretical calculation and a new experimental determination of the 1s3p ^3P_J fine structure intervals in atomic ^4He. The values from the theoretical calculation of 8113.730(6) MHz and 658.801(6) MHz for the nu_{01} and nu_{12} inter vals, respectively, disagree significantly with previous experimental results. However, the new laser spectroscopic measurement reported here yields values of 8113.714(28) MHz and 658.810(18) MHz for these intervals. These results show an excellent agreement with the theoretical values and resolve the apparent discrepancy between theory and experiment.
65 - Xu Wang , J. H. Eberly 2012
Important information about strong-field atomic or molecular ionization can be missed when using linearly polarized laser fields. The field strength at which an electron was ionized, or the time during a pulse of the ionization event are examples of such missing information. In treating single, double, and triple ionization events we show that information of this kind is made readily available by use of elliptical polarization.
We have investigated energies, magnetic dipole hyperfine structure constants ($A_{hyf}$) and electric dipole (E1) matrix elements of a number of low-lying states of the triply ionized tin (Sn$^{3+}$) by employing relativistic coupled-cluster theory. Contributions from the Breit interaction and lower-order quantum electrodynamics (QED) effects in determination of above quantities are also given explicitly. These higher-order relativistic effects are found to be important for accurate evaluation of energies, while QED contributions are seen to be contributing significantly to the determination of $A_{hyf}$ values. Our theoretical results for energies are in agreement with one of the measurements but show significant differences for some states with another measurement. Reported $A_{hyf}$ will be useful in guiding measurements of hyperfine levels in the stable isotopes of Sn$^{3+}$. The calculated E1 matrix elements are further used to estimate oscillator strengths, transition probabilities and dipole polarizabilities ($alpha$) of many states. Large discrepancies between present results and previous calculations of oscillator strengths and transition probabilities are observed for a number of states. The estimated $alpha$ values will be useful for carrying out high precision measurements using Sn$^{3+}$ ion in future experiments.
Using resonant two-step laser excitation of trapped 232Th+ ions, we observe 43 previously unknown energy levels within the energy range from 7.3 to 8.3 eV. The high density of states promises a strongly enhanced electronic bridge excitation of the 22 9mTh nuclear state that is expected in this energy range. From the observation of resonantly enhanced three-photon ionization of Th+, the second ionization potential of thorium can be inferred to lie within the range between 11.9 and 12.3 eV. Pulsed laser radiation in a wide wavelength range from 237 to 289 nm is found to provide efficient photodissociation of molecular ions that are formed in reactions of Th+ with impurities in the buffer gas, leading to a significantly increased storage time for Th+ in the ion trap.
The thermal friction force acting on an atom moving relative to a thermal photon bath is known to be proportional to an integral over the imaginary part of the frequency-dependent atomic (dipole) polarizability. Using a numerical approach, we find th at blackbody friction on atoms either in dilute environments or in hot ovens is larger than previously thought by orders of magnitude. This enhancement is due to far off-resonant driving of transitions by low-frequency thermal radiation. At typical temperatures, the blackbody radiation maximum lies far below the atomic transition wavelengths. Surprisingly, due to the finite lifetime of atomic levels, which gives rise to Lorentzian line profiles, far off-resonant excitation leads to the dominant contribution to the blackbody friction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا