ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical Theory of High Field Atomic Ionization Using Elliptical Polarization

115   0   0.0 ( 0 )
 نشر من قبل Xu Wang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Important information about strong-field atomic or molecular ionization can be missed when using linearly polarized laser fields. The field strength at which an electron was ionized, or the time during a pulse of the ionization event are examples of such missing information. In treating single, double, and triple ionization events we show that information of this kind is made readily available by use of elliptical polarization.



قيم البحث

اقرأ أيضاً

221 - Xu Wang , J. H. Eberly 2010
The degree of elliptical polarization of intense short laser pulses is shown to be related to the timing of strong-field non-sequential double ionization. Higher ellipticity is predicted to force the initiation of double ionization into a narrower ti me window, and this pins the ionizing field strength in an unexpected way, leading to the first experimentally testable formula for double ionization probability as a function of ellipticity.
Strong-field ionization and rescattering beyond the long-wavelength limit of the dipole approximation is studied with elliptically polarized mid-IR pulses. We have measured the full three-dimensional photoelectron momentum distributions (3D PMDs) wit h velocity map imaging and tomographic reconstruction. The ellipticity-dependent 3D-PMD measurements revealed an unexpected sharp, thin line-shaped ridge structure in the polarization plane for low momentum photoelectrons. With classical trajectory Monte Carlo (CTMC) simulations and analytical methods we identified the associated ionization dynamics for this sharp ridge to be due to Coulomb focusing of slow recollisions of electrons with a momentum approaching zero. This ridge is another example of the many different ways how the Coulomb field of the parent ion influences the different parts of the momentum space of the ionized electron wave packet. Building on this new understanding of the PMD, we extend our studies on the role played by the magnetic field component of the laser beam when operating beyond the long-wavelength limit of the dipole approximation. In this regime, we find that the PMD exhibits an ellipticity-dependent asymmetry along the beam propagation direction: the peak of the projection of the PMD onto the beam propagation axis is shifted from negative to positive values with increasing ellipticity. This turnover occurs rapidly once the ellipticity exceeds $sim$0.1. We identify the sharp, thin line-shaped ridge structure in the polarization plane as the origin of the ellipticity-dependent PMD asymmetry in the beam propagation direction. These results yield fundamental insights into strong-field ionization processes, and should increase the precision of the emerging applications relying on this technique, including time-resolved holography and molecular imaging.
223 - Daniel Trabert 2021
We present experimental data on the non-adiabatic strong field ionization of atomic hydrogen using elliptically polarized femtosecond laser pulses at a central wavelength of 390 nm. Our measured results are in very good agreement with a numerical sol ution of the time-dependent Schrodinger equation (TDSE). Experiment and TDSE show four above-threshold ionization (ATI) peaks in the electrons energy spectrum. The most probable emission angle (also known as attoclock-offset angle or streaking angle) is found to increase with energy, a trend that is opposite to standard predictions based on Coulomb interaction with the ion. We show that this increase of deflection-angle can be explained by a model that includes non-adiabatic corrections of the initial momentum distribution at the tunnel exit and non-adiabatic corrections of the tunnel exit position itself.
We analyze how bound-state excitation, electron exchange and the residual binding potential influence above-threshold ionization (ATI) in Helium prepared in an excited $p$ state, oriented parallel and perpendicular to a linearly polarized mid-IR fiel d. Using ab initio B-spline Algebraic Diagrammatic Construction (ADC), and several one-electron methods with effective potentials, including the Schrodinger solver Qprop, modifi
The orientation-dependent strong-field ionization of CO molecules is investigated using the fully propagated three-dimensional time-dependent Hartree-Fock theory. The full ionization results are in good agreement with recent experiments. The comparis ons between the full method and single active orbital (SAO) method show that although the core electrons are generally more tightly bounded and contribute little to the total ionization yields, their dynamics cannot be ignored, which effectively modify the behaviors of electrons in the highest occupied molecular orbital. By incorporating it into the SAO method, we identify that the dynamic core polarization plays an important role in the strong-field tunneling ionization of CO molecules, which is helpful for future development of tunneling ionization theory of molecules beyond single active electron approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا