ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine Structure of the 1s3p ^3P_J Level in Atomic ^4He: Theory and Experiment

50   0   0.0 ( 0 )
 نشر من قبل Peter Mueller
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a theoretical calculation and a new experimental determination of the 1s3p ^3P_J fine structure intervals in atomic ^4He. The values from the theoretical calculation of 8113.730(6) MHz and 658.801(6) MHz for the nu_{01} and nu_{12} intervals, respectively, disagree significantly with previous experimental results. However, the new laser spectroscopic measurement reported here yields values of 8113.714(28) MHz and 658.810(18) MHz for these intervals. These results show an excellent agreement with the theoretical values and resolve the apparent discrepancy between theory and experiment.

قيم البحث

اقرأ أيضاً

195 - Marc Diepold 2016
We provide an up to date summary of the theory contributions to the 2S-2P Lamb shift and the fine structure of the 2P state in the muonic helium ion $(mathrm{mu^4He})^+$. This summary serves as the basis for the extraction of the alpha particle charg e radius from the muonic helium Lamb shift measurements at the Paul Scherrer Institute, Switzerland. Individual theory contributions needed for a charge radius extraction are compared and compiled into a consistent summary. The influence of the alpha particle charge distribution on the elastic two-photon exchange is studied to take into account possible model-dependencies of the energy levels on the electric form factor of the nucleus. We also discuss the theory uncertainty which enters the extraction of the $mathrm{^3He-^4He}$ isotope shift from the muonic measurements. The theory uncertainty of the extraction is much smaller than a present discrepancy between previous isotope shift measurements. This work completes our series of $n=2$ theory compilations in light muonic atoms which we have performed already for muonic hydrogen, deuterium, and helium-3 ions.
Radio-frequency electric-dipole transitions between nearly degenerate, opposite parity levels of atomic dysprosium (Dy) were monitored over an eight-month period to search for a variation in the fine-structure constant, $alpha$. The data provide a ra te of fractional temporal variation of $alpha$ of $(-2.4pm2.3)times10^{-15}$ yr$^{-1}$ or a value of $(-7.8 pm 5.9) times 10^{-6}$ for $k_alpha$, the variation coefficient for $alpha$ in a changing gravitational potential. All results indicate the absence of significant variation at the present level of sensitivity. We also present initial results on laser cooling of an atomic beam of dysprosium.
A means to extract the fine-structure constant $alpha$ from precision spectroscopic data on one-electron ions is presented. We show that in an appropriately weighted difference of the bound-electron $g$ factor and the ground state energy, nuclear str uctural effects can be effectively suppressed. This method is anticipated to deliver an independent value of $alpha$ via existing or near-future combined Penning trap and x-ray spectroscopic technology, and enables decreasing the uncertainty of $alpha$ by orders of magnitude.
Radio-frequency E1 transitions between nearly degenerate, opposite parity levels of atomic dysprosium were monitored over an eight month period to search for a variation in the fine-structure constant. During this time period, data were taken at diff erent points in the gravitational potential of the Sun. The data are fitted to the variation in the gravitational potential yielding a value of $(-8.7 pm 6.6) times 10^{-6}$ for the fit parameter $k_alpha$. This value gives the current best laboratory limit. In addition, our value of $k_{alpha}$ combined with other experimental constraints is used to extract the first limits on k_e and k_q. These coefficients characterize the variation of m_e/m_p and m_q/m_p in a changing gravitational potential, where m_e, m_p, and m_q are electron, proton, and quark masses. The results are $k_e = (4.9 pm 3.9) times 10^{-5}$ and $k_q = (6.6 pm 5.2) times 10^{-5}$.
We continue the analysis of quantum two-particle bound systems we have started in (Kholmetskii, A.L., Missevitch, O.V. and Yarman, T. Phys. Scr., 82 (2010), 045301), where we re-postulated the Dirac equation for the bound electron in an external EM f ield based on the requirement of total momentum conservation, when its EM radiation is prohibited. It has been shown that the modified expression for the energy levels of hydrogenic atoms within such a pure bound field theory (PBFT) provides the same gross and fine structure of energy levels like the standard theory. Now we apply the PBFT to the analysis of hyperfine interactions and show the appearance of some important corrections to the energy levels (the 1S-2S interval and hyperfine spin-spin splitting in positronium, 1S and 2S-2P Lamb shift in hydrogen), which remedies considerably the discrepancy between theoretical predictions and experimental results. In particular, the corrected 1S-2S interval and the spin-spin splitting in positronium practically eliminate the available up to date deviation between theoretical and experimental data. The re-estimated classic 2S-2P Lamb shift as well as ground state Lamb shift in the hydrogen atom lead to the proton charge radius rp=0.837(8) fm (from 2S-2P Lamb shift), and rp=0.840(24) fm (from 1S Lamb shift), which corresponds to the latest estimation of proton size via the measurement of 2S-2P Lamb shift in muonic hydrogen, i.e. rp=0.84184(67) fm. We also emphasize the universal character of PBFT, which is applicable to heavy atoms, too, and analyze 2S-2P interval in Li-like uranium. We show that the corrections we introduced provide a better correspondence between the calculated and experimental data than that furnished by the standard approach. The results obtained support our principal idea of the enhancement of the bound EM field in the absence of EM radiation for quantum bound systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا