ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of Blackbody Friction due to the Finite Lifetime of Atomic Levels

130   0   0.0 ( 0 )
 نشر من قبل Ulrich Jentschura
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermal friction force acting on an atom moving relative to a thermal photon bath is known to be proportional to an integral over the imaginary part of the frequency-dependent atomic (dipole) polarizability. Using a numerical approach, we find that blackbody friction on atoms either in dilute environments or in hot ovens is larger than previously thought by orders of magnitude. This enhancement is due to far off-resonant driving of transitions by low-frequency thermal radiation. At typical temperatures, the blackbody radiation maximum lies far below the atomic transition wavelengths. Surprisingly, due to the finite lifetime of atomic levels, which gives rise to Lorentzian line profiles, far off-resonant excitation leads to the dominant contribution to the blackbody friction.



قيم البحث

اقرأ أيضاً

The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of $5.5 times 10^{-19}$. Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now $1times10^{-18}$. Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response.
In finite-time quantum heat engines, some work is consumed to drive a working fluid accompanying coherence, which is called `friction. To understand the role of friction in quantum thermodynamics, we present a couple of finite-time quantum Otto cycle s with two different baths: Agarwal versus Lindbladian. We solve them exactly and compare the performance of the Agarwal engine with that of the Lindbladian engine. In particular, we find remarkable and counterintuitive results that the performance of the Agarwal engine due to friction can be much higher than that in the quasistatic limit with the Otto efficiency, and the power of the Lindbladian engine can be nonzero in the short-time limit. Based on additional numerical calculations of these outcomes, we discuss possible origins of such differences between two engines and reveal them. Our results imply that even with an equilibrium bath, a nonequilibrium working fluid brings on the higher performance than what an equilibrium working fluid does.
Atom interferometry is amongst the most advanced technologies that provides very high-precision measurements. There can exist a number of obscure forces that can interfere with the atoms used in this instrument. In the present work, we are probing po ssible roles of one such important forces, known as ``blackbody friction force (BBFF), that may affect the precisions in the measurements made using atom interferometers based on the Rb and Cs atoms. The BBFF can be generated on atoms due to the black-body radiations emitted by the stray electromagnetic fields present in the experimental set-up and other metallic shielding. The strength of the BBFF can be calculated by integrating the complex parts of the dynamic polarizabilities of atoms, which show varying behaviour at the resonant and non-resonant transitions in the above atoms. Our analyses suggest that the off-resonant atomic transitions make significant contributions to the BBFF at low temperatures in the Rb and Cs atom interferometers. Present study also advocates that it is imperative to carry out the integration over a wide spectrum of frequencies for correct evaluation of the BBFF; specially at higher temperatures.
The Stark shift of the ytterbium optical clock transition due to room temperature blackbody radiation is dominated by a static Stark effect, which was recently measured to high accuracy [J. A. Sherman et al., Phys. Rev. Lett. 108, 153002 (2012)]. How ever, room temperature operation of the clock at 10^{-18} inaccuracy requires a dynamic correction to this static approximation. This dynamic correction largely depends on a single electric dipole matrix element for which theoretically and experimentally derived values disagree significantly. We determine this important matrix element by two independent methods, which yield consistent values. Along with precise radiative lifetimes of 6s6p 3P1 and 5d6s 3D1, we report the clocks blackbody radiation shift to 0.05% precision.
We evaluated the static and dynamic polarizabilities of the 5s^2 ^1S_0 and 5s5p ^3P_0^o states of Sr using the high-precision relativistic configuration interaction + all-order method. Our calculation explains the discrepancy between the recent exper imental 5s^2 ^1S_0 - 5s5p ^3P_0^o dc Stark shift measurement Delta alpha = 247.374(7) a.u. [Middelmann et. al, arXiv:1208.2848 (2012)] and the earlier theoretical result of 261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of 247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic correction to the BBR shift with 1 % uncertainty; -0.1492(16) Hz. The dynamic correction to the BBR shift is unusually large in the case of Sr (7 %) and it enters significantly into the uncertainty budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the present uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا