ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Coin Flipping

106   0   0.0 ( 0 )
 نشر من قبل John Wiltshire-Gordon
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Alice seeks an information-theoretically secure source of private random data. Unfortunately, she lacks a personal source and must use remote sources controlled by other parties. Alice wants to simulate a coin flip of specified bias $alpha$, as a function of data she receives from $p$ sources; she seeks privacy from any coalition of $r$ of them. We show: If $p/2 leq r < p$, the bias can be any rational number and nothing else; if $0 < r < p/2$, the bias can be any algebraic number and nothing else. The proof uses projective varieties, convex geometry, and the probabilistic method. Our results improve on those laid out by Yao, who asserts one direction of the $r=1$ case in his seminal paper [Yao82]. We also provide an application to secure multiparty computation.



قيم البحث

اقرأ أيضاً

Differential privacy has emerged as a standard requirement in a variety of applications ranging from the U.S. Census to data collected in commercial devices, initiating an extensive line of research in accurately and privately releasing statistics of a database. An increasing number of such databases consist of data from multiple sources, not all of which can be trusted. This leaves existing private analyses vulnerable to attacks by an adversary who injects corrupted data. Despite the significance of designing algorithms that guarantee privacy and robustness (to a fraction of data being corrupted) simultaneously, even the simplest questions remain open. For the canonical problem of estimating the mean from i.i.d. samples, we introduce the first efficient algorithm that achieves both privacy and robustness for a wide range of distributions. This achieves optimal accuracy matching the known lower bounds for robustness, but the sample complexity has a factor of $d^{1/2}$ gap from known lower bounds. We further show that this gap is due to the computational efficiency; we introduce the first family of algorithms that close this gap but takes exponential time. The innovation is in exploiting resilience (a key property in robust estimation) to adaptively bound the sensitivity and improve privacy.
The seminal result of Kahn, Kalai and Linial shows that a coalition of $O(frac{n}{log n})$ players can bias the outcome of any Boolean function ${0,1}^n to {0,1}$ with respect to the uniform measure. We extend their result to arbitrary product measur es on ${0,1}^n$, by combining their argument with a completely different argument that handles very biased coordinates. We view this result as a step towards proving a conjecture of Friedgut, which states that Boolean functions on the continuous cube $[0,1]^n$ (or, equivalently, on ${1,dots,n}^n$) can be biased using coalitions of $o(n)$ players. This is the first step taken in this direction since Friedgut proposed the conjecture in 2004. Russell, Saks and Zuckerman extended the result of Kahn, Kalai and Linial to multi-round protocols, showing that when the number of rounds is $o(log^* n)$, a coalition of $o(n)$ players can bias the outcome with respect to the uniform measure. We extend this result as well to arbitrary product measures on ${0,1}^n$. The argument of Russell et al. relies on the fact that a coalition of $o(n)$ players can boost the expectation of any Boolean function from $epsilon$ to $1-epsilon$ with respect to the uniform measure. This fails for general product distributions, as the example of the AND function with respect to $mu_{1-1/n}$ shows. Instead, we use a novel boosting argument alongside a generalization of our first result to arbitrary finite ranges.
63 - Maor Ganz , Or Sattath 2017
A quantum board game is a multi-round protocol between a single quantum player against the quantum board. Molina and Watrous discovered quantum hedging. They gave an example for perfect quantum hedging: a board game with winning probability < 1, such that the player can win with certainty at least 1-out-of-2 quantum board games played in parallel. Here we show that perfect quantum hedging occurs in a cryptographic protocol - quantum coin flipping. For this reason, when cryptographic protocols are composed, hedging may introduce serious challenges into their analysis. We also show that hedging cannot occur when playing two-outcome board games in sequence. This is done by showing a formula for the value of sequential two-outcome board games, which depends only on the optimal value of a single board game; this formula applies in a more general setting, in which hedging is only a special case.
To explore the vulnerability of deep neural networks (DNNs), many attack paradigms have been well studied, such as the poisoning-based backdoor attack in the training stage and the adversarial attack in the inference stage. In this paper, we study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes. Specifically, our goal is to misclassify a specific sample into a target class without any sample modification, while not significantly reduce the prediction accuracy of other samples to ensure the stealthiness. To this end, we formulate this problem as a binary integer programming (BIP), since the parameters are stored as binary bits ($i.e.$, 0 and 1) in the memory. By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem, which can be effectively and efficiently solved using the alternating direction method of multipliers (ADMM) method. Consequently, the flipped critical bits can be easily determined through optimization, rather than using a heuristic strategy. Extensive experiments demonstrate the superiority of our method in attacking DNNs.
Common models for random graphs, such as ErdH{o}s-R{e}nyi and Kronecker graphs, correspond to generating random adjacency matrices where each entry is non-zero based on a large matrix of probabilities. Generating an instance of a random graph based o n these models is easy, although inefficient, by flipping biased coins (i.e. sampling binomial random variables) for each possible edge. This process is inefficient because most large graph models correspond to sparse graphs where the vast majority of coin flips will result in no edges. We describe some not-entirely-well-known, but not-entirely-unknown, techniques that will enable us to sample a graph by finding only the coin flips that will produce edges. Our analogies for these procedures are ball-dropping, which is easier to implement, but may need extra work due to duplicate edges, and grass-hopping, which results in no duplicated work or extra edges. Grass-hopping does this using geometric random variables. In order to use this idea on complex probability matrices such as those in Kronecker graphs, we decompose the problem into three steps, each of which are independently useful computational primitives: (i) enumerating non-decreasing sequences, (ii) unranking multiset permutations, and (iii) decoding and encoding z-curve and Morton codes and permutations. The third step is the result of a new connection between repeated Kronecker product operations and Morton codes. Throughout, we draw connections to ideas underlying applied math and computer science including coupon collector problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا