ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum coin hedging, and a counter measure

64   0   0.0 ( 0 )
 نشر من قبل Maor Ganz
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantum board game is a multi-round protocol between a single quantum player against the quantum board. Molina and Watrous discovered quantum hedging. They gave an example for perfect quantum hedging: a board game with winning probability < 1, such that the player can win with certainty at least 1-out-of-2 quantum board games played in parallel. Here we show that perfect quantum hedging occurs in a cryptographic protocol - quantum coin flipping. For this reason, when cryptographic protocols are composed, hedging may introduce serious challenges into their analysis. We also show that hedging cannot occur when playing two-outcome board games in sequence. This is done by showing a formula for the value of sequential two-outcome board games, which depends only on the optimal value of a single board game; this formula applies in a more general setting, in which hedging is only a special case.



قيم البحث

اقرأ أيضاً

The security of quantum communication using a weak coherent source requires an accurate knowledge of the sources mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to d eviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD, we model both a strong attack using technology possible in principle, and a realistic attack bounded by todays technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantiques commercial QKD system Clavis2. We scrutinize this implementation for security problems, and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.
In this letter we present the first implementation of a quantum coin tossing protocol. This protocol belongs to a class of ``two-party cryptographic problems, where the communication partners distrust each other. As with a number of such two-party pr otocols, the best implementation of the quantum coin tossing requires qutrits. In this way, we have also performed the first complete quantum communication protocol with qutrits. In our experiment the two partners succeeded to remotely toss a row of coins using photons entangled in the orbital angular momentum. We also show the experimental bounds of a possible cheater and the ways of detecting him.
We introduce quantum walks with a time-dependent coin, and show how they include, as a particular case, the generalized quantum walk recently studied by Wojcik et al. {[}Phys. Rev. Lett. textbf{93}, 180601(2004){]} which exhibits interesting dynamica l localization and quasiperiodic dynamics. Our proposal allows for a much easier implementation of this particular rich dynamics than the original one. Moreover, it allows for an additional control on the walk, which can be used to compensate for phases appearing due to external interactions. To illustrate its feasibility, we discuss an example using an optical cavity. We also derive an approximated solution in the continuous limit (long--wavelength approximation) which provides physical insight about the process.
179 - Miquel Montero 2013
In this paper we present closed-form expressions for the wave function that governs the evolution of the discrete-time quantum walk on a line when the coin operator is arbitrary. The formulas were derived assuming that the walker can either remain pu t in the place or proceed in a fixed direction but never move backward, although they can be easily modified to describe the case in which the particle can travel in both directions. We use these expressions to explore the properties of magnitudes associated to the process, as the probability mass function or the probability current, even though we also consider the asymptotic behavior of the exact solution. Within this approximation, we will estimate upper and lower bounds, consider the origins of an emerging approximate symmetry, and deduce the general form of the stationary probability density of the relative location of the walker.
In discrete-time quantum walk (DTQW) the walkers coin space entangles with the position space after the very first step of the evolution. This phenomenon may be exploited to obtain the value of the coin parameter $theta$ by performing measurements on the sole position space of the walker. In this paper, we evaluate the ultimate quantum limits to precision for this class of estimation protocols, and use this result to assess measurement schemes having limited access to the position space of the walker in one dimension. We find that the quantum Fisher information (QFI) of the walkers position space $H_w(theta)$ increases with $theta$ and with time which, in turn, may be seen as a metrological resource. We also find a difference in the QFI of {em bounded} and {em unbounded} DTQWs, and provide an interpretation of the different behaviors in terms of interference in the position space. Finally, we compare $H_w(theta)$ to the full QFI $H_f(theta)$, i.e., the QFI of the walkers position plus coin state, and find that their ratio is dependent on $theta$, but saturates to a constant value, meaning that the walker may probe its coin parameter quite faithfully.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا