ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust and Differentially Private Mean Estimation

121   0   0.0 ( 0 )
 نشر من قبل Sewoong Oh
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Differential privacy has emerged as a standard requirement in a variety of applications ranging from the U.S. Census to data collected in commercial devices, initiating an extensive line of research in accurately and privately releasing statistics of a database. An increasing number of such databases consist of data from multiple sources, not all of which can be trusted. This leaves existing private analyses vulnerable to attacks by an adversary who injects corrupted data. Despite the significance of designing algorithms that guarantee privacy and robustness (to a fraction of data being corrupted) simultaneously, even the simplest questions remain open. For the canonical problem of estimating the mean from i.i.d. samples, we introduce the first efficient algorithm that achieves both privacy and robustness for a wide range of distributions. This achieves optimal accuracy matching the known lower bounds for robustness, but the sample complexity has a factor of $d^{1/2}$ gap from known lower bounds. We further show that this gap is due to the computational efficiency; we introduce the first family of algorithms that close this gap but takes exponential time. The innovation is in exploiting resilience (a key property in robust estimation) to adaptively bound the sensitivity and improve privacy.

قيم البحث

اقرأ أيضاً

Differentially private stochastic gradient descent (DPSGD) is a variation of stochastic gradient descent based on the Differential Privacy (DP) paradigm which can mitigate privacy threats arising from the presence of sensitive information in training data. One major drawback of training deep neural networks with DPSGD is a reduction in the models accuracy. In this paper, we propose an alternative method for preserving data privacy based on introducing noise through learnable probability distributions, which leads to a significant improvement in the utility of the resulting private models. We also demonstrate that normalization layers have a large beneficial impact on the performance of deep neural networks with noisy parameters. In particular, we show that contrary to general belief, a large amount of random noise can be added to the weights of neural networks without harming the performance, once the networks are augmented with normalization layers. We hypothesize that this robustness is a consequence of the scale invariance property of normalization operators. Building on these observations, we propose a new algorithmic technique for training deep neural networks under very low privacy budgets by sampling weights from Gaussian distributions and utilizing batch or layer normalization techniques to prevent performance degradation. Our method outperforms previous approaches, including DPSGD, by a substantial margin on a comprehensive set of experiments on Computer Vision and Natural Language Processing tasks. In particular, we obtain a 20 percent accuracy improvement over DPSGD on the MNIST and CIFAR10 datasets with DP-privacy budgets of $varepsilon = 0.05$ and $varepsilon = 2.0$, respectively. Our code is available online: https://github.com/uds-lsv/SIDP.
Common datasets have the form of elements with keys (e.g., transactions and products) and the goal is to perform analytics on the aggregated form of key and frequency pairs. A weighted sample of keys by (a function of) frequency is a highly versatile summary that provides a sparse set of representative keys and supports approximate evaluations of query statistics. We propose private weighted sampling (PWS): A method that ensures element-level differential privacy while retaining, to the extent possible, the utility of a respective non-private weighted sample. PWS maximizes the reporting probabilities of keys and estimation quality of a broad family of statistics. PWS improves over the state of the art also for the well-studied special case of private histograms, when no sampling is performed. We empirically demonstrate significant performance gains compared with prior baselines: 20%-300% increase in key reporting for common Zipfian frequency distributions and accuracy for $times 2$-$ 8$ lower frequencies in estimation tasks. Moreover, PWS is applied as a simple post-processing of a non-private sample, without requiring the original data. This allows for seamless integration with existing implementations of non-private schemes and retaining the efficiency of schemes designed for resource-constrained settings such as massive distributed or streamed data. We believe that due to practicality and performance, PWS may become a method of choice in applications where privacy is desired.
Correlation clustering is a widely used technique in unsupervised machine learning. Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering. We propose an algorithm that achieves subquadratic additive error compared to the optimal cost. In contrast, straightforward adaptations of existing non-private algorithms all lead to a trivial quadratic error. Finally, we give a lower bound showing that any pure differentially private algorithm for correlation clustering requires additive error of $Omega(n)$.
In this work we consider the problem of online submodular maximization under a cardinality constraint with differential privacy (DP). A stream of $T$ submodular functions over a common finite ground set $U$ arrives online, and at each time-step the d ecision maker must choose at most $k$ elements of $U$ before observing the function. The decision maker obtains a payoff equal to the function evaluated on the chosen set, and aims to learn a sequence of sets that achieves low expected regret. In the full-information setting, we develop an $(varepsilon,delta)$-DP algorithm with expected $(1-1/e)$-regret bound of $mathcal{O}left( frac{k^2log |U|sqrt{T log k/delta}}{varepsilon} right)$. This algorithm contains $k$ ordered experts that learn the best marginal increments for each item over the whole time horizon while maintaining privacy of the functions. In the bandit setting, we provide an $(varepsilon,delta+ O(e^{-T^{1/3}}))$-DP algorithm with expected $(1-1/e)$-regret bound of $mathcal{O}left( frac{sqrt{log k/delta}}{varepsilon} (k (|U| log |U|)^{1/3})^2 T^{2/3} right)$. Our algorithms contains $k$ ordered experts that learn the best marginal item to select given the items chosen her predecessors, while maintaining privacy of the functions. One challenge for privacy in this setting is that the payoff and feedback of expert $i$ depends on the actions taken by her $i-1$ predecessors. This particular type of information leakage is not covered by post-processing, and new analysis is required. Our techniques for maintaining privacy with feedforward may be of independent interest.
We revisit the problem of $n$-gram extraction in the differential privacy setting. In this problem, given a corpus of private text data, the goal is to release as many $n$-grams as possible while preserving user level privacy. Extracting $n$-grams is a fundamental subroutine in many NLP applications such as sentence completion, response generation for emails etc. The problem also arises in other applications such as sequence mining, and is a generalization of recently studied differentially private set union (DPSU). In this paper, we develop a new differentially private algorithm for this problem which, in our experiments, significantly outperforms the state-of-the-art. Our improvements stem from combining recent advances in DPSU, privacy accounting, and new heuristics for pruning in the tree-based approach initiated by Chen et al. (2012).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا