ترغب بنشر مسار تعليمي؟ اضغط هنا

Targeted Attack against Deep Neural Networks via Flipping Limited Weight Bits

72   0   0.0 ( 0 )
 نشر من قبل Jiawang Bai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To explore the vulnerability of deep neural networks (DNNs), many attack paradigms have been well studied, such as the poisoning-based backdoor attack in the training stage and the adversarial attack in the inference stage. In this paper, we study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes. Specifically, our goal is to misclassify a specific sample into a target class without any sample modification, while not significantly reduce the prediction accuracy of other samples to ensure the stealthiness. To this end, we formulate this problem as a binary integer programming (BIP), since the parameters are stored as binary bits ($i.e.$, 0 and 1) in the memory. By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem, which can be effectively and efficiently solved using the alternating direction method of multipliers (ADMM) method. Consequently, the flipped critical bits can be easily determined through optimization, rather than using a heuristic strategy. Extensive experiments demonstrate the superiority of our method in attacking DNNs.

قيم البحث

اقرأ أيضاً

Node injection attack on Graph Neural Networks (GNNs) is an emerging and practical attack scenario that the attacker injects malicious nodes rather than modifying original nodes or edges to affect the performance of GNNs. However, existing node injec tion attacks ignore extremely limited scenarios, namely the injected nodes might be excessive such that they may be perceptible to the target GNN. In this paper, we focus on an extremely limited scenario of single node injection evasion attack, i.e., the attacker is only allowed to inject one single node during the test phase to hurt GNNs performance. The discreteness of network structure and the coupling effect between network structure and node features bring great challenges to this extremely limited scenario. We first propose an optimization-based method to explore the performance upper bound of single node injection evasion attack. Experimental results show that 100%, 98.60%, and 94.98% nodes on three public datasets are successfully attacked even when only injecting one node with one edge, confirming the feasibility of single node injection evasion attack. However, such an optimization-based method needs to be re-optimized for each attack, which is computationally unbearable. To solve the dilemma, we further propose a Generalizable Node Injection Attack model, namely G-NIA, to improve the attack efficiency while ensuring the attack performance. Experiments are conducted across three well-known GNNs. Our proposed G-NIA significantly outperforms state-of-the-art baselines and is 500 times faster than the optimization-based method when inferring.
We study the realistic potential of conducting backdoor attack against deep neural networks (DNNs) during deployment stage. Specifically, our goal is to design a deployment-stage backdoor attack algorithm that is both threatening and realistically im plementable. To this end, we propose Subnet Replacement Attack (SRA), which is capable of embedding backdoor into DNNs by directly modifying a limited number of model parameters. Considering the realistic practicability, we abandon the strong white-box assumption widely adopted in existing studies, instead, our algorithm works in a gray-box setting, where architecture information of the victim model is available but the adversaries do not have any knowledge of parameter values. The key philosophy underlying our approach is -- given any neural network instance (regardless of its specific parameter values) of a certain architecture, we can always embed a backdoor into that model instance, by replacing a very narrow subnet of a benign model (without backdoor) with a malicious backdoor subnet, which is designed to be sensitive (fire large activation value) to a particular backdoor trigger pattern.
133 - Kaidi Xu , Sijia Liu , Pin-Yu Chen 2020
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks. In this paper, we focus on the so-called textit{backdoor attack}, which injects a backdoor trigger to a small portion of training data (also known as data poisoning) such that the trained DNN induces misclassification while facing examples with this trigger. To be specific, we carefully study the effect of both real and synthetic backdoor attacks on the internal response of vanilla and backdoored DNNs through the lens of Gard-CAM. Moreover, we show that the backdoor attack induces a significant bias in neuron activation in terms of the $ell_infty$ norm of an activation map compared to its $ell_1$ and $ell_2$ norm. Spurred by our results, we propose the textit{$ell_infty$-based neuron pruning} to remove the backdoor from the backdoored DNN. Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
166 - Bowei Xi , Yujie Chen , Fan Fei 2021
The paper develops a new adversarial attack against deep neural networks (DNN), based on applying bio-inspired design to moving physical objects. To the best of our knowledge, this is the first work to introduce physical attacks with a moving object. Instead of following the dominating attack strategy in the existing literature, i.e., to introduce minor perturbations to a digital input or a stationary physical object, we show two new successful attack strategies in this paper. We show by superimposing several patterns onto one physical object, a DNN becomes confused and picks one of the patterns to assign a class label. Our experiment with three flapping wing robots demonstrates the possibility of developing an adversarial camouflage to cause a targeted mistake by DNN. We also show certain motion can reduce the dependency among consecutive frames in a video and make an object detector blind, i.e., not able to detect an object exists in the video. Hence in a successful physical attack against DNN, targeted motion against the system should also be considered.
Spatiotemporal forecasting plays an essential role in various applications in intelligent transportation systems (ITS), such as route planning, navigation, and traffic control and management. Deep Spatiotemporal graph neural networks (GNNs), which ca pture both spatial and temporal patterns, have achieved great success in traffic forecasting applications. Understanding how GNNs-based forecasting work and the vulnerability and robustness of these models becomes critical to real-world applications. For example, if spatiotemporal GNNs are vulnerable in real-world traffic prediction applications, a hacker can easily manipulate the results and cause serious traffic congestion and even a city-scale breakdown. However, despite that recent studies have demonstrated that deep neural networks (DNNs) are vulnerable to carefully designed perturbations in multiple domains like objection classification and graph representation, current adversarial works cannot be directly applied to spatiotemporal forecasting due to the causal nature and spatiotemporal mechanisms in forecasting models. To fill this gap, in this paper we design Spatially Focused Attack (SFA) to break spatiotemporal GNNs by attacking a single vertex. To achieve this, we first propose the inverse estimation to address the causality issue; then, we apply genetic algorithms with a universal attack method as the evaluation function to locate the weakest vertex; finally, perturbations are generated by solving an inverse estimation-based optimization problem. We conduct experiments on real-world traffic data and our results show that perturbations in one vertex designed by SA can be diffused into a large part of the graph.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا