ترغب بنشر مسار تعليمي؟ اضغط هنا

Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

109   0   0.0 ( 0 )
 نشر من قبل Lance Cooley
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Breakdown of the surface barrier against magnetic flux penetration at the cavity equator is considered to be the critical event that determines the onset of Q-drop. The worst case of triangular grooves with low field of first flux penetration Hp, as analyzed previously by Buzdin and Daumens, [1998 Physica C 294: 257], was adapted. This approach incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter kappa, so the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hp when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. When in combination, contamination exacerbates the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of kappa. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~30%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop.



قيم البحث

اقرأ أيضاً

Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made o f medium purity Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800 - 1400 C was done in a newly designed vacuum induction furnace. Q0 values of the order of 2x1010 at 2.0 K and peak surface magnetic field (Bp) of 90 mT were achieved reproducibly. A Q0-value of (5+-1)1010 at 2.0 K and Bp = 90 mT was obtained after heat treatment at 1400 C. This is the highest value ever reported at this temperature, frequency and field. Samples heat treated with the cavity at 1400 C were analyzed by secondary ion mass spectrometry, secondary electron microscopy, energy dispersive X-ray, point contact tunneling and X-ray diffraction and revealed a complex surface composition which includes titanium oxide, increased carbon and nitrogen content but reduced hydrogen concentration compared to a non heat-treated sample.
Quench of superconducting radio-frequency cavities frequently leads to the lowered quality factor Q0, which had been attributed to the additional trapped magnetic flux. Here we demonstrate that the origin of this magnetic flux is purely extrinsic to the cavity by showing no extra dissipation (unchanged Q0) after quenching in zero magnetic field, which allows us to rule out intrinsic mechanisms of flux trapping such as generation of thermal currents or trapping of the rf field. We also show the clear relation of dissipation introduced by quenching to the orientation of the applied magnetic field and the possibility to fully recover the quality factor by requenching in the compensated field. We discover that for larger values of the ambient field, the Q-factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during quench. Our findings are of special practical importance for accelerators based on low- and medium-beta accelerating structures residing close to focusing magnets, as well as for all high-Q cavity-based accelerators.
Characterizing superconducting microwave resonators with highly dissipative elements is a technical challenge, but a requirement for implementing and understanding the operation of hybrid quantum devices involving dissipative elements, e.g. for therm al engineering and detection. We present experiments on $lambda/4$ superconducting niobium coplanar waveguide (CPW) resonators, terminating at the antinode by a dissipative copper microstrip via aluminum leads, such that the resonator response is difficult to measure in a typical microwave environment. By measuring the transmission both above and below the superconducting transition of aluminum, we are able to isolate the resonance. We then experimentally verify this method with copper microstrips of increasing thicknesses, from 50 nm to 150 nm, and measure quality factors in the range of $10sim67$ in a consistent way.
We investigate the design, fabrication and experimental characterization of high Quality factor photonic crystal nanobeam cavities in silicon. Using a five-hole tapered 1D photonic crystal mirror and precise control of the cavity length, we designed cavities with theoretical Quality factors as high as 14 million. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a Quality factor of nearly 750,000. The effect of cavity size on mode frequency and Quality factor was simulated and then verified experimentally.
105 - Feisi He , Weimin Pan , Peng Sha 2020
Recently, heat treatment between 250 C and 500 C has been attempted to improve quality factor of superconducting radio-frequency cavities at FNAL and KEK. Experiments of such medium temperature (mid-T) bake with furnaces have also been carried out at IHEP. Firstly, eleven 1.3 GHz 1-cell cavities were treated with different temperatures at a small furnace. The average quality factor has reached 3.6E10 when the gradient is 16 MV/m. Then, the recipe of mid-T furnace bake at 300 C for 3 hours has been applied to six 1.3 GHz 9-cell cavities at a new big furnace. The average quality factor has reached 3.8E10 when the gradient is 16 MV/m.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا