ﻻ يوجد ملخص باللغة العربية
Recently, heat treatment between 250 C and 500 C has been attempted to improve quality factor of superconducting radio-frequency cavities at FNAL and KEK. Experiments of such medium temperature (mid-T) bake with furnaces have also been carried out at IHEP. Firstly, eleven 1.3 GHz 1-cell cavities were treated with different temperatures at a small furnace. The average quality factor has reached 3.6E10 when the gradient is 16 MV/m. Then, the recipe of mid-T furnace bake at 300 C for 3 hours has been applied to six 1.3 GHz 9-cell cavities at a new big furnace. The average quality factor has reached 3.8E10 when the gradient is 16 MV/m.
The performance of superconducting radio-frequency (SRF) cavities depends on the niobium surface condition. Recently, various heat-treatment methods have been investigated to achieve unprecedented high quality factor (Q) and high accelerating field (
In this study, we present new insights on the origin of the high-field Q-slope in superconducting radio-frequency cavities. Consequent hydrofluoric acid rinses are used to probe the radio-frequency performance as a function of the material removal of
We propose an experimental setup to search for Axion-like particles (ALPs) using two superconducting radio-frequency cavities. In this light-shining-through-wall setup the axion is sourced by two modes with large fields and nonzero $vec Ecdot vec B$
In this paper we present the discovery of a new surface treatment applied to superconducting radio frequency (SRF) niobium cavities, leading to unprecedented accelerating fields of 49 MV/m in TESLA-shaped cavities, in continuous wave (CW); the corres
We report a surface treatment that systematically improves the quality factor of niobium radio frequency cavities beyond the expected limit for niobium. A combination of annealing in a partial pressure of nitrogen or argon gas and subsequent electrop