ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity

112   0   0.0 ( 0 )
 نشر من قبل Pashupati Dhakal
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of medium purity Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800 - 1400 C was done in a newly designed vacuum induction furnace. Q0 values of the order of 2x1010 at 2.0 K and peak surface magnetic field (Bp) of 90 mT were achieved reproducibly. A Q0-value of (5+-1)1010 at 2.0 K and Bp = 90 mT was obtained after heat treatment at 1400 C. This is the highest value ever reported at this temperature, frequency and field. Samples heat treated with the cavity at 1400 C were analyzed by secondary ion mass spectrometry, secondary electron microscopy, energy dispersive X-ray, point contact tunneling and X-ray diffraction and revealed a complex surface composition which includes titanium oxide, increased carbon and nitrogen content but reduced hydrogen concentration compared to a non heat-treated sample.



قيم البحث

اقرأ أيضاً

We report the rf performance of a single-cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120-160 {deg}C with a nitrogen partial pressure of ~25 mTorr. This increase in quality factor as well as the Q-rise phenomenon (anti-Q-slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N2-treated at 120 {deg}C and at140 {deg}C, showed no degradation in accelerating gradient, however the accelerating gradient was degraded by 25 with a 160 {deg}C N2 treatment. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb_2O5, NbO and NbN(1-x)Ox within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.
116 - A Dzyuba , A Romanenko , 2010
A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Breakdown of the surface barrier against magnetic flux penetration at the cavity equator is considered to be the critical event that determines the onset of Q-drop. The worst case of triangular grooves with low field of first flux penetration Hp, as analyzed previously by Buzdin and Daumens, [1998 Physica C 294: 257], was adapted. This approach incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter kappa, so the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hp when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. When in combination, contamination exacerbates the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of kappa. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~30%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop.
71 - G. Ciovati 2020
Superconducting radio-frequency cavities are commonly used in modern particle accelerators for applied and fundamental research. Such cavities are typically made of high-purity, bulk Nb and are cooled by a liquid helium bath at a temperature of ~2 K. The size, cost and complexity of operating a particle accelerator with a liquid helium refrigerator makes the current cavity technology not favorable for use in industrial-type accelerators. We developed a multi-metallic 1.495~GHz elliptical cavity conductively cooled by a cryocooler. The cavity has a ~2 $mu$m thick layer of Nb$_3$Sn on the inner surface, exposed to the rf field, deposited on a ~3 mm thick bulk Nb shell and a bulk Cu shell, of thickness $geqslant 5$ mm deposited on the outer surface by electroplating. A bolt-on Cu plate 1.27 cm thick was used to thermally connect the cavity equator to the second stage of a Gifford-McMahon cryocooler with a nominal capacity of 2 W at 4.2 K. The cavity was tested initially in liquid helium at 4.3 K and reached a peak surface magnetic field of ~36 mT with a quality factor of $2times 10^9$. The cavity cooled by the crycooler achieved a peak surface magnetic field of ~29 mT, equivalent to an accelerating gradient of 6.5 MV/m, and it was able to operate in continuous-wave with as high as 5 W dissipation in the cavity for 1 h without any thermal breakdown. This result represents a paradigm shift in the technology of superconducting accelerator cavities.
In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (muSR) technique. We employ for the first time the muSR technique to study samples that are cutout from large and small gra in 1.5 GHz radio frequency (RF) single cell niobium cavities. The RF test of these cavities was accompanied by full temperature mapping to characterize the RF losses in each of the samples. Results of the muSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing (BCP) performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field RF losses and field dependence of the sample magnetic volume fraction measured via muSR. The muSR line width observed in ZF-muSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. An upper bound for the upper critical field Hc2 of these cutouts is found.
258 - R. Russo , L. Catani , A. Cianchi 2004
The vacuum arc is a well-known technique to produce coating with enhanced adhesion and film density. Many cathodic arc deposition systems are actually in use in industry and research. They all work under (high) vacuum conditions in which water vapor pressure is an important source of film contamination, especially in the pulsed arc mode of operation. Here we present a Cathodic Arc system working under Ultra High Vacuum conditions (UHVCA). UHVCA has been used to produce ultra-pure niobium films with excellent structural and electrical properties at a deposition temperature lower than 100oC. The UHVCA technique therefore opens new perspectives for all applications requiring ultra-pure films or, as in the case of Plasma Immersion Ion Implantation, ultra-pure plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا