ترغب بنشر مسار تعليمي؟ اضغط هنا

Mesospheric vertical thermal structure and winds on Venus from HHSMT CO spectral-line observations

49   0   0.0 ( 0 )
 نشر من قبل Miriam Rengel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Rengel




اسأل ChatGPT حول البحث

We report vertical thermal structure and wind velocities in the Venusian mesosphere retrieved from carbon monoxide (12CO J=2-1 and 13CO J=2-1) spectral line observations obtained with the Heinrich Hertz Submillimeter Telescope (HHSMT). We observed the mesosphere of Venus from two days after the second Messenger flyby of Venus (on June 5 2007 at 23:10 UTC) during five days. Day-to-day and day-to-night temperature variations and short-term fluctuations of the mesospheric zonal flow were evident in our data. The extensive layer of warm air detected recently by SPICAV at 90 - to 100 km altitude is also detected in the temperature profiles reported here. These data were part of a coordinated ground-based Venus observational campaign in support of the ESA Venus Express mission. Furthermore, this study attempts to cross-calibrate space- and ground-based observations, to constrain radiative transfer and retrieval algorithms for planetary atmospheres, and to contribute to a more thorough understanding of the global patterns of circulation of the Venusian atmosphere.

قيم البحث

اقرأ أيضاً

266 - M. Rengel 2008
We present submillimeter observations of 12CO J=3-2 and J=2-1, and 13CO J = 2-1 lines of the Venusian mesosphere and lower thermosphere with the Heinrich Hertz Submillimeter Telescope (HHSMT) taken around the second MESSENGER flyby of Venus on 5 June 2007. The observations cover a range of Venus solar elongations with different fractional disk illuminations. Preliminary results like temperature and CO abundance profiles are presented.These data are part of a coordinated observational campaign in support of the ESA Venus Express mission. Furthermore, this study attempts to contribute to cross-calibrate space- and ground-based observations, to constrain radiative transfer and retrieval algorithms for planetary atmospheres, and to a more thorough understanding of the global patters of circulation of the Venusian atmosphere.
The Millimeter-wave Intensity Mapping Experiment (mmIME) recently reported a detection of excess spatial fluctuations at a wavelength of 3 mm, which can be attributed to unresolved emission of several CO rotational transitions between $zsim1-5$. We s tudy the implications of this data for the high-redshift interstellar medium using a suite of state-of-the-art semianalytic simulations which have successfully reproduced many other sub-millimeter line observations across the relevant redshift range. We find that the semianalytic predictions are mildly in tension with the mmIME result, with a predicted CO power $sim3.5sigma$ below what was observed. We explore some simple modifications to the models which could resolve this tension. Increasing the molecular gas abundance at the relevant redshifts to $sim10^8 M_odot rm{Mpc}^{-3}$, a value well above that obtained from directly imaged sources, would resolve the discrepancy, as would assuming a CO-$H_2$ conversion factor $alpha_{rm{CO}}$ of $sim1.5 M_{odot}$ K$^{-1}$ $(rm{km}/rm{s})^{-1}$ pc$^{2}$, a value somewhat lower than is commonly assumed. We go on to demonstrate that these conclusions are quite sensitive to the detailed assumptions of our simulations, highlighting the need for more careful modeling efforts as more intensity mapping data become available.
One of the striking features about Venus atmosphere is its temporal variability and dynamics, with a chaotic polar vortex, large-scale atmospheric waves, sheared features, and variable winds that depend on local time and possibly orographic features. The aim of this research is to combine data accumulated over several years and obtain a global mean state of the atmosphere focusing in the global structure of the clouds using the cloud opacity and upper cloud temperatures. We have first produced global maps using the integrated radiance through the infrared atmospheric windows centred around 1.74{mu}m and 2.25{mu}m, that show the spatial variations of the cloud opacity in the lower clouds around 44-48 km altitude and also provide an indirect estimation of the possible particle size. We have also produced similar global maps using the brightness temperatures seen in the thermal region at 3.8{mu}m and 5.0{mu}m, which provide direct indication of the temperatures at the top of the clouds around 60-70 km altitude. These maps have been generated using the complete dataset of the Visible and InfraRed Thermal Imaging Spectrometer mapping channel (VIRTIS-M) on board Venus Express, with a wide spatial and long temporal coverage in the period from May 2006 until October 2008. Our results provide a global view of the cloud opacity, particle size and upper cloud temperatures at both hemispheres, showing the main different dynamical regions of the planet. The profiles obtained also provide the detailed dependencies with latitude, local time and longitude, diagnostic of the global circulation flow and dynamics at various altitude layers, from about 44 up to 70 km over the surface.
One of the most intriguing, long-standing questions regarding Venus atmosphere is the origin and distribution of the unknown UV-absorber, responsible for the absorption band detected at the near-UV and blue range of Venus spectrum. In this work, we u se data collected by MASCS spectrograph on board the MESSENGER mission during its second Venus flyby in June 2007 to address this issue. Spectra range from 0.3 {mu}m to 1.5 {mu}m including some gaseous H2O and CO2 bands, as well as part of the SO2 absorption band and the core of the UV absorption. We used the NEMESIS radiative transfer code and retrieval suite to investigate the vertical distribution of particles in the Equatorial atmosphere and to retrieve the imaginary refractive indices of the UV-absorber, assumed to be well mixed with Venus small mode-1 particles. The results show an homogeneous Equatorial atmosphere, with cloud tops (height for unity optical depth) at 75+/-2 km above surface. The UV absorption is found to be centered at 0.34+/-0.03 {mu}m with a full width half maximum of 0.14+/-0.01 {mu}m. Our values are compared with previous candidates for the UV aerosol absorber, among which disulfur oxide (S2O) and dioxide disulfur (S2O2) provide the best agreement with our results.
There is strong experimental evidence that the superconductor Sr2RuO4 has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr2RuO4. Theoretical scenarios have been proposed to account for the existence of accidental nodes or deep accidental minima within a p-wave state. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima) are vertical (parallel to the tetragonal c axis) or horizontal (perpendicular to the c axis). Here, we report thermal conductivity measurements on single crystals of Sr2RuO4 down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T = 0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to Tc/30 and down to Hc/100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H = 0 to H = Hc2. These findings show that the gap structure of Sr2RuO4 consists of vertical line nodes. Given that the c-axis dispersion (warping) of the Fermi surface in Sr2RuO4 varies strongly from surface to surface, the small a-c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p-wave order parameter for Sr2RuO4. To reconcile the gap structure revealed by our data with a p-wave state, a mechanism must be found that produces accidental line nodes in Sr2RuO4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا