ﻻ يوجد ملخص باللغة العربية
One of the striking features about Venus atmosphere is its temporal variability and dynamics, with a chaotic polar vortex, large-scale atmospheric waves, sheared features, and variable winds that depend on local time and possibly orographic features. The aim of this research is to combine data accumulated over several years and obtain a global mean state of the atmosphere focusing in the global structure of the clouds using the cloud opacity and upper cloud temperatures. We have first produced global maps using the integrated radiance through the infrared atmospheric windows centred around 1.74{mu}m and 2.25{mu}m, that show the spatial variations of the cloud opacity in the lower clouds around 44-48 km altitude and also provide an indirect estimation of the possible particle size. We have also produced similar global maps using the brightness temperatures seen in the thermal region at 3.8{mu}m and 5.0{mu}m, which provide direct indication of the temperatures at the top of the clouds around 60-70 km altitude. These maps have been generated using the complete dataset of the Visible and InfraRed Thermal Imaging Spectrometer mapping channel (VIRTIS-M) on board Venus Express, with a wide spatial and long temporal coverage in the period from May 2006 until October 2008. Our results provide a global view of the cloud opacity, particle size and upper cloud temperatures at both hemispheres, showing the main different dynamical regions of the planet. The profiles obtained also provide the detailed dependencies with latitude, local time and longitude, diagnostic of the global circulation flow and dynamics at various altitude layers, from about 44 up to 70 km over the surface.
Context. Radio occultation is a technique used to study planetary atmospheres by means of the refraction and absorption of a spacecraft carrier signal through the atmosphere of the celestial body of interest, as detected from a ground station on Eart
We present the detection and characterisation of mesoscale waves on the lower clouds of Venus using images from the Visible Infrared Thermal Imaging Spectrometer onboard the European Venus Express space mission and from the 2 $mu$m camera (IR2) instr
Longwave Infrared Camera (LIR) onboard Akatsuki first revealed the global structure of the thermal tides in the upper cloud layer of Venus. The data were acquired over three Venusian years, and the analysis was done over the areas from the equator to
Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (The Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we
The recent candidate detection of ~1 ppb of phosphine in the middle atmosphere of Venus is so unexpected that it requires an exhaustive search for explanations of its origin. Phosphorus-containing species have not been modelled for Venus atmosphere b