ترغب بنشر مسار تعليمي؟ اضغط هنا

Vertical line nodes in the superconducting gap structure of Sr2RuO4

171   0   0.0 ( 0 )
 نشر من قبل Elena Hassinger
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is strong experimental evidence that the superconductor Sr2RuO4 has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr2RuO4. Theoretical scenarios have been proposed to account for the existence of accidental nodes or deep accidental minima within a p-wave state. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima) are vertical (parallel to the tetragonal c axis) or horizontal (perpendicular to the c axis). Here, we report thermal conductivity measurements on single crystals of Sr2RuO4 down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T = 0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to Tc/30 and down to Hc/100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H = 0 to H = Hc2. These findings show that the gap structure of Sr2RuO4 consists of vertical line nodes. Given that the c-axis dispersion (warping) of the Fermi surface in Sr2RuO4 varies strongly from surface to surface, the small a-c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p-wave order parameter for Sr2RuO4. To reconcile the gap structure revealed by our data with a p-wave state, a mechanism must be found that produces accidental line nodes in Sr2RuO4.



قيم البحث

اقرأ أيضاً

117 - K.Izawa , Y.Kasahara , Y.Matsuda 2005
The superconducting gap structure of recently discovered heavy fermion CePt_3Si without spatial inversion symmetry was investigated by thermal transport measurements down to 40 mK. In zero field a residual T-linear term was clearly resolved as T-> 0, with a magnitude in good agreement with the value expected for a residual normal fluid with a nodal gap structure, together with a T^2-dependence at high temperatures. With an applied magnetic fields, the thermal conductivity grows rapidly, in dramatic contrast to fully gapped superconductors, and exhibits one-parameter scaling with T/sqrt{H}. These results place an important constraint on the order parameter symmetry, that is CePt_3Si is most likely to have line nodes.
The thermal conductivity k of the iron-arsenide superconductor K-Ba122 was measured down to 50 mK in a magnetic field up to 15 T, for a heat current parallel and perpendicular to the tetragonal c axis. In the range from optimal doping (x ~ 0.4) down to x = 0.16, there is no residual linear term in k(T) at T = 0, showing that there are no nodes in the superconducting gap anywhere on the Fermi surface. Upon crossing below x = 0.16, a large residual linear term suddenly appears, signaling the onset of nodes in the superconducting gap, most likely vertical line nodes running along the c axis. We discuss two scenarios: 1) accidental nodes in an s-wave gap, resulting from a strong modulation of the gap around the Fermi surface, in which minima deepen rapidly with underdoping; 2) a phase transition from a nodeless s-wave state to a d-wave state, in which nodes are imposed by symmetry.
88 - K.Iida , M. Kofu , K. Suzuki 2020
We investigated the low-energy incommensurate (IC) magnetic fluctuations in Sr$_2$RuO$_4$ by the high-resolution inelastic neutron scattering measurements and random phase approximation (RPA) calculations. We observed a spin resonance with energy of $hbaromega_text{res}=0.56$~meV centered at a characteristic wavevector $mathbf{Q}_text{res}=(0.3, 0.3, 0.5)$. The resonance energy corresponds well to the superconducting gap $2Delta=0.56$~meV estimated by the tunneling spectroscopy. The spin resonance shows the $L$ modulation with a maximum at around $L = 0.5$. The $L$ modulated intensity of the spin resonance and our RPA calculations indicate that the superconducting gaps regarding the quasi-one-dimensional $alpha$ and $beta$ sheets at the Fermi surfaces have the horizontal line nodes. These results may set a strong constraint on the pairing symmetry of Sr$_2$RuO$_4$. We also discuss the implications on possible superconducting order parameters.
We report on tunneling spectroscopy measurements using a Scanning Tunneling Microscope (STM) on the spin triplet superconductor Sr2RuO4. We find a negligible density of states close to the Fermi level and a fully opened gap with a value of $Delta$=0. 28 meV, which disappears at T$_c$ = 1.5 K. $Delta$ is close to the result expected from weak coupling BCS theory ($Delta_0$=1.76kBT$_c$ = 0.229 meV). Odd parity superconductivity is associated with a fully isotropic gap without nodes over a significant part of the Fermi surface.
We have obtained strong experimental evidence for the full determination of the superconducting gap structure in all three bands of the spin-triplet superconductor Sr2RuO4 for the first time. We have extended the measurements of the field-orientation dependent specific heat to include conical field rotations consisting of in-plane azimuthal angle phi-sweeps at various polar angles theta performed down to 0.1 K. Clear 4-fold oscillations of the specific heat and a rapid suppression of it by changing theta are explained only by a compensation from two types of bands with anti-phase gap anisotropies with each other. The results indicate that the active band, responsible for the superconducting instability, is the gamma-band with the lines of gap minima along the [100] directions, and the passive band is the alpha- and beta-bands with the lines of gap minima or zeros along the [110] directions in their induced superconducting gaps. We also demonstrated the scaling of the specific heat for the field in the c-direction, which supports the line-node-like gap structures running along the kz direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا