ﻻ يوجد ملخص باللغة العربية
In wireless packet-forwarding networks with selfish nodes, application of a repeated game can induce the nodes to forward each others packets, so that the network performance can be improved. However, the nodes on the boundary of such networks cannot benefit from this strategy, as the other nodes do not depend on them. This problem is sometimes known as {em the curse of the boundary nodes}. To overcome this problem, an approach based on coalition games is proposed, in which the boundary nodes can use cooperative transmission to help the backbone nodes in the middle of the network. In return, the backbone nodes are willing to forward the boundary nodes packets. Here, the concept of core is used to study the stability of the coalitions in such games. Then three types of fairness are investigated, namely, min-max fairness using nucleolus, average fairness using the Shapley function, and a newly proposed market fairness. Based on the specific problem addressed in this paper, market fairness is a new fairness concept involving fairness between multiple backbone nodes and multiple boundary nodes. Finally, a protocol is designed using both repeated games and coalition games. Simulation results show how boundary nodes and backbone nodes form coalitions according to different fairness criteria. The proposed protocol can improve the network connectivity by about 50%, compared with pure repeated game schemes.
This paper introduces a novel concept from coalitional game theory which allows the dynamic formation of coalitions among wireless nodes. A simple and distributed merge and split algorithm for coalition formation is constructed. This algorithm is app
We analyze a cooperative wireless communication system with finite block length and finite battery energy, under quasi-static Rayleigh fading. Source and relay nodes are powered by a wireless energy transfer (WET) process, while using the harvested e
Collaborative beamforming (CB) and cooperative transmission (CT) have recently emerged as communication techniques that can make effective use of collaborative/cooperative nodes to create a virtual multiple-input/multiple-output (MIMO) system. Extend
We integrate a wireless powered communication network with a cooperative cognitive radio network, where multiple secondary users (SUs) powered wirelessly by a hybrid access point (HAP) help a primary user relay the data. As a reward for the cooperati
Consider a multi-cell mobile edge computing network, in which each user wishes to compute the product of a user-generated data matrix with a network-stored matrix. This is done through task offloading by means of input uploading, distributed computin